Q1: Parameters

Contact: Nick Walker

Parameter Plane

- Discussion point: Tor's parameter sets for
 - 'Nominal'
 - Low Q
 - Large $\sigma *_y$
 - Low average beam power
- In addition
 - Original TESLA TDR set
 - USSC
 - High Luminosity

pushing the limits!

- 2×10³⁴ cm⁻²s⁻¹

3×10³⁴ cm⁻²s⁻¹ 2.7×10³⁴ cm⁻²s⁻¹ 5×10³⁴ cm⁻²s⁻¹

Our Goal for the BCD

- Is **NOT** to select a <u>single</u> parameter set
- but to understand the limitations for each subsystem
- examine the relative trade-offs between the parameters
- make sure we allow enough flexibility in our design to deal with the unexpected

 risk mitigation
- If we design to a single parameter set we effectively loose overhead (safety margin)
 and the possibility of luminosity >2×10³⁴ cm⁻²s⁻¹

Beam and IP parameters for 500 GeV cms

	TESLA	USSC	Nominal	Low Q	Large Y	Low P	High L
E_{cms} (GeV)	500	500	500	500	500	500	500
$N(10^{10})$	2.0	2.0	2.0	1.0	2.0	2.0	2.0
n_b	2820	2820	2820	5640	2820	1330	2820
t_b (ns)	336.9	336.9	307.7	153.8	307.7	461.5	307.7
bucket interval	438	438	400	200	400	600	400
I_{ave} (mA)	9.5	9.5	10.4	10.4	10.4	6.9	10.4
Gradient	23.4	28.0	30.0	30.0	30.0	30.0	30.0
$\gamma \epsilon^*_x$ (mm·rad)	10	9.6	10	10	12	10	10
$\gamma \epsilon^*_y$ (mm·rad)	0.03	0.04	0.04	0.03	0.08	0.035	0.03
β_x^* (mm)	15	15	21	12	10	10	10
β_{y}^{*} (mm)	0.4	0.4	0.4	0.2	0.4	0.2	0.2
σ_x^* (nm)	554	543	655	495	495	452	452
σ_{y}^{*} (nm)	5.0	5.7	5.7	3.5	8.1	3.8	3.5
σ_z (μ m)	300	300	300	150	500	200	150
D_x	0.226	0.235	0.162	0.0708	0.468	0.226	0.170
D_y	25.3	22.3	18.5	10.0	28.6	27.0	21.9
Υ_{ave}	0.054	0.055	0.046	0.061	0.036	0.100	0.133
δ_{BS}	0.030	0.031	0.022	0.018	0.024	0.057	0.070
P_{BS} (MW)	0.335	0.347	0.248	0.205	0.267	0.306	0.790
n_{γ}	1.477	1.504	1.257	0.823	1.664	1.756	1.725
Inc. Pairs/bc 10 ⁶	0.414	0.366	0.259	0.084	0.350	0.612	0.637
H_D	1.80	1.78	1.70	1.56	1.79	1.65	1.74
\mathcal{L}_{geom} 10 ³⁴	1.64	1.45	1.20	1.29	1.12	1.24	2.83
$L^{-}10^{34}$	2.94	2.57	2.03	2.01	2.00	2.05	4.92

WG feedback

- WG1: direct thanks!
- WG2: no comment
- WG3a: no input
- WG3b: nothing new since GG1
 parameters session
- WG4: nothing new since GG1 parameters session
- WG5: no comment

Damping Rings

- Low Q set a discussion point
- No real cries of 'impossible' (yet!) although we push limits hard
- Low Q / lower bunch number makes life easier for DR designers
 - Although these two parameters are not independent
 - Low Q requires 6000 bunches
- Pushes problem elsewhere
 - Shorter bunch required (150 μ m)
 - Small σ_{v}^{*} (larger divergence)

Damping Rings (cont.)

- Other variants discussed
- Very low Q
 - Not far from TR low Q but pushes limits still further (large n_b still needed)
- Reduction of n_b (factor 2) $\rightarrow \text{low } P_{av}$
- Larger ε_y with smaller $\varepsilon_x \longrightarrow \text{large } \sigma^*_y$ set
- Increased repetition rate (10Hz)
 - Currently not foreseen in parameter range
 - So-called 'high-power' option removed

Pulse Length

- Longer RF pulse (~2ms) suggested
 - Peak current reduced by 2
 - Coupler power reduced by 2
 - Halves number of klystrons/modulators
 - Potential significant cost saving
 - Increase in cyro by factor 2
- Klystrons & modulators do not currently exist
 - R&D programme
 - Not for BCD at present (IMO) but should be considered as alternative
- Other gotchas
 - source problems (laser for e-, capture section for e+)

note: range for tuneable Q_{ext} not infinite!

LET considerations

- Cannot currently guarantee emittance budget
 - Much (simulation) work to be done (on-going)
 - Importance of large $\sigma^*_{\ v}$ parameter set
- Solutions for factor 40 bunch compression exist
 - but needs 2-stage compressor \rightarrow cost!
 - for factor 20 single-stage may work
 - but excludes 150 μm bunch length (low Q and high L)

BDS

- Two critical issues
 - beamstrahlung (spent beam extraction)
 - angular divergence (β^*)
- Current 500 GeV parameter sets look OK
 extraction for high-L for 2mrad questionable
- Original 1TeV high-L not feasible
 - alternate solution suggested by Seryi
 - shifts stress to DR/LET emittance preservation
 - very tough: should perhaps consider reducing high-L luminosity (ie reduce 'safety margin')

Preliminary Conclusions

- Current set of 500 GeV numbers cover most of the discussed parameter space
- Still waiting for feedback from WGs
- Two parameters not in current plane
 - 10Hz operation Not baseline, but could be
 - 2ms pulse length \int considered alternatives
- Concrete constraint from WG4 for 1TeV high-L parameter set
 - the first 'can't do that' request!
- Bottom line: no real need to change these parameter ranges as yet
 - we await more input from WGs (especially DR)