# New University Based SRF Materials Research Efforts (in the US)

Pierre Bauer, Tsuyoshi Tajima, Anne-Marie Valente

Snowmass 2005 Materials R&D / WG5



#### LCRD 2005 - 6 Proposals

Funded:

P.Lee: Magnetic Investigation of High Purity Niobium for

Superconducting RF Cavities, new proposal, DOE

D.N. Seidman: 3D Atom-Probe Microscopy on Niobium for SRF Cavities

new proposal, DOE

L. Vuskovic: Investigation of Plasma Etching for Superconducting RF Cavities

surface Preparation, new proposal, DOE

Not funded:

R. Schill: Investigation of Secondary Electron Emission from Nb

Surfaces with Different Surface Treatments, new proposal

V.Nesterenko: Evaluation of MgB2 for Future Accelerator Cavities, new

proposal

D.N. Seidman: Experimental Study of High Field Limits of RF Cavities, new

proposal

# Magnetic Flux Penetration Fnal / University of Wisconsin

Magneto-optical measurements show clear evidence of "pre-mature" flux penetration into samples via the grain boundary. Example below: large grain material from JLab before processing.



Zero field cooled (ZFC) to the superconducting state, then field applied.



Top Surface Light Image



ZFC T=5.6 K H=8.4 mT



3D Model of GB

# Mixed Josephson/Abrikosov vortex penetration



# Other Activities University of Wisconsin

Microscopy and related material characterization (surface roughness, metallurgical, crystallo-graphical, chemical,..)



Theoretical work by <u>A. Gurevich</u>: "hot spot model" Non-linear BCS resistance Thermal Feedback model





#### **UW – mid-term program**



### 3D atomic probe at NU / Fnal



First results: Smooth transition from  $Nb_2O_5$  to Nb with 5-10% interstitial O, ~20 nm oxide

### **NU** - mid-term program



### JLab/ODU - Plasma-Etching

A.M. Valente / L. Vuskovic: Plasma-etching:

- ➤ Takes place under vacuum.
- ➤ Allows "control" on the final oxidation phase
- ➤ Allows the possibility to avoid final oxidation



Combines well w. other JLab programs:

L. Phillips: TE011 cavity

G. Wu: Plasma Coating

- 1) plasma oxidation in Ar-O after plasma etching (stable surfaces with a much higher pentoxide to sub-oxide ratios?)
- 2) dielectric layers
- 3) thin superconducting layers;- i.e. NbN which is quite stable in the

presence of air.

#### **Another Gurevich Idea**

Higher-T<sub>c</sub>SC: NbN, Nb<sub>3</sub>Sn, etc



Multilayer coating of SC cavities: alternating SC and insulating layers with  $d < \lambda$ 

Higher T<sub>c</sub> thin layers provide magnetic screening of the bulk SC cavity (Nb, Pb) without vortex penetration

For NbN films with d = 20 nm, the rf field can be as high as 4.2 T!

No open ends for the cavity geometry to prevent flux leaks in the insulating layers

A. Gurevich



# LANL/UC - MgB2 Development

#### T. Tajima / STI / Padamsee / Geng / Romanenko:



~400 nm film was grown on 1.5 cm Nb at STI.

First attempt to coat on a Nb substrate. The Nb substrate was

rough ( $R_a \sim 400 \text{ nm}$ ).



Measurement at Cornell with TE<sub>011</sub> Nb cavity at 4.2 K.

There was only one test and the result needs to be confirmed with others.

#### **ANL/NU – Field Emission**

#### Atom Probe samples look like field emission (breakdown) sites.

- Atom Probe work is useful for two reasons:
  - 1) It provides a detailed look at high electric field on materials.
  - 2) It provides a way of looking at surface composition.

|               | Emitter in Cavity | Atom Probe Sample    |
|---------------|-------------------|----------------------|
| Surface field | 4 – 8 GV/m        | 4 – 40 GV/m          |
| Size          | ~100 nm           | ~100 nm              |
| Temperature   | 300+ K            | 20 – 300 K           |
| Pulsing       | 200 - 12000 MHz   | 0.2 MHz              |
| Stored energy | 1 – 100 J         | < 10 <sup>-6</sup> J |
|               |                   |                      |

#### J. Norem / D. Seidman / J. Sebastian / K. Yoon:

### We need more university involvement!

- ➤ Chemical analysis (3DAP, XPS, SIMS, AES,...)
- ➤ Superconducting properties (magnetization, STM, SQUID microscopy, ....)
- ➤ Low and high power RF properties (sample in host cavity tests, microwave microscopy, ??)
- ➤ Microscopy, surface roughness
- ➤ Defect detection ECS, SQUID-ECS,...
- ➤ More ideas??

# **MSU** – Thermal Properties



# **MSU - Mechanical Properties**

Orientation Imaging Microscopy shows microstructure and texture information together

Texture in weld is similar to parent material

H. Jiang,T. Bieler:

mechanical properties,

formability, texture, creep

Next: single crystal material



# Laser Annealing Experiments with Niobium

W.R. Frisken, Physics and Astronomy, York Univ., Toronto, Canada L.N. Hand, Physics and CCMR, Cornell University, Ithaca NY, USA G.H. Chapman, J. Wang, C.-H. Choo, and Y. Tu, School of Engineering Science, Simon Fraser Univ., Burnaby B.C., Canada