Fast Kickers at DESY

- Injection / ejection in a TESLA like DR
- Generation of a pulse with a pulse length of $12 n s$
- Measurement at TTF 2
- Full power test
- Measurements at ATF
- XFEL activity

Talk given by Hans Weise
Work done by Frank Obier

TESLA like damping ring- injection / ejection

Generation of pulse with a pulse length of 12 ns

- principle set up of the pulser
- Behlke switch built in Mosfet technology
- max. 1000 single pulses with 1μ s spacing

Behlke switch data:

Type	HTS 80-12UF
Pulse voltage	8 kV
Pulse current	120 A (tp<50ns)
Jitter	100 ps
Rise time (10-90\%)	2 ns

Pulser data:

Voltage	6.5 kV
Pulse current	73.6 A
Frequency (burst)	1 MHz
Number of pulses	1000
Pulse length	12 ns

Ripple Measurement

Timing Jitter

Swicht HTS 80-12UF $\mathrm{t}_{\mathrm{on}}=10 \mathrm{~ns}$

Channel 1 Trigger (Delay .-Trigger generator) Channel 4 Pulse current with a Jitter of 200ps (Behlke Data: Typical Turn-on Jitter of 100ps)

Pearson Current Monitor Model 6585	
Sensitivity	$1 \mathrm{~V} / \mathrm{A}+/-1 \%$
	$0.5 \mathrm{~V} / \mathrm{A}$ into
50Ω	
Output resistance	50Ω
Max. peak current	500 A
Max. rms current	10 A
Droop rate	$0.8 \% / \mathrm{ss}$
Useable rise time	1.5 ns
Low frequency 3 dB cut-off	400 Hz
High frequency $+/-3 \mathrm{~dB}$	250 MHz

Measurements at TTF 2

Ceramic Kicker

Data:	
Voltage	7.0 kV
Pulse current	61 A
Pulse length	12 ns

- principle set up of the kicker
- measure the kicker strength
- scan the kicker pulse with a step width of 0.5 ns and taking 20 pulses for each data point.

Measurements at TTF 2

Measurement on kicker 'flat' top to investigate influence of timing jitter. Standard deviations of unkicked / kicked bunch (eposx1/eposx2) are given below as well as relative error. Smallest error as low as 0.5% at certain delay, relative error increases with distance from 'flat, top. Kicker HV = 7kV.

Pulse with a burst frequency of 3MHz

- max. 1000 single pulses with $1 \mu \mathrm{~s}$ spacing

Pulser data:	
Voltage	6.5 kV
Pulse current	73.6 A
Frequency (burst)	3 MHz
Number of pulses	3000
Pulse length	12 ns

F. Obier / DESY

Full power test with a HTS 50-08-UF switch

For this Measurement we have a pulser with three switches HTS 50-08 UF. Full power test with three Switches 500 single pulses and 1μ s spacing each.

Voltages	4.5 kV
Current	38 A
Pulse length	8 ns
Rise time (10-90\%)	3 ns
Micro pulse repetition rate	3 MHz
Macro pulse repetition rate	1 Hz
Number of pulse	1500

Time	Temperature Power Stack $\left[{ }^{\circ} \mathrm{C}\right]$	Temperature control section $\left[{ }^{\circ} \mathrm{C}\right]$	Current $[\mathrm{A}]$
$07: 05$	19,6	19,6	38
$07: 21$	37	32	36
$07: 29$	41	35	35,6
$07: 36$	44	37	35,2
$07: 45$	48	40	34,8
$07: 53$	50	42	34,4
$08: 01$	52	44	34,2
$08: 07$	53	45	34,2
$08: 13$	55	46	34

Absorber Temperature
 $34^{\circ} \mathrm{C}$

Full power test with a HTS 80-12-UF switch

For this Measurement we have a pulser with three switches HTS 80-12 UF.	
Full power test with three Switches 1000 single pulses and $1 \mu \mathrm{~s}$ spacing	
each.	
Voltages	6.5 kV
Current	78.5 A
Pulse length	16 ns
Rise time (10-90\%)	4 ns
Micro pulse repetition rate	3 MHz
Macro pulse repetition rate	$1 \mathrm{~Hz} / 5 \mathrm{~Hz}$
Number of pulse	3000

Absorber Temperature $45^{\circ} \mathrm{C}$
Absorber Temperature $105^{\circ} \mathrm{C}$

F. Obier / DESY

Measurement at KEK ATF Ring

The beam kick is observed by a turn-by turn BPM as the amplitude of the oscillation of the betatron frequency.
The kick effect is measured by scanning the pulse timing for the beam timing.

Timing Scan(DESY Behlke HTS-80-12-UF)

Next steps:
New Behlke switches with a water cooling and with selected Mosfet semiconductor are ordered (delivery date 08/05).
Investigate the pulse to pulse stability and the long-term stability
(temperature drift) of a 3 MHz pulser.

XFEL activities

Next steps:

- New Behlke switches with a rep. rate of 5 MHz (delivery date unknown) are under development at the company. We expect a rectangular current pulse.
- The alternative: a pulser with 5 parallel HTS 80-12 UF switches.
- Or use a pulser with single semiconductors (Directed Energy, Inc. DE-150 102N02A). Pulse form: a sinus half-wave.

For this beam distribution we need a 5 MHz pulser with following data:

		XFEL
Energy	GeV	20
Deflection angle	mrad	0,3
Rep. Rate Macro pulse	Hz	10
Rep. Rate Bunch	MHz	5
Pulse Width	ns	200
Bdl	mTm	12
Accuracy	$5 \mathrm{e}-5$	
Ripple	$5 \mathrm{e}-5$	
Bunch spacing	ns	200
Pulse structure		burst
Amplitude		variable

XFEL activities

- principle set up of the pulser
- Directed Energy, Inc. Mosfet DE-150 102N02A
- Generate single pulses with 200ns spacing

XFEL activities

For this beam distribution we need a long pulse modulator with following data:

		XFEL
Energy	GeV	20
Deflection angle	mrad	0,3
Rep. Rate Macro pulse	Hz	10
Rep. Rate Bunch	MHz	5
Pulse Width	$\mu \mathrm{s}$	290
Bdl	mTm	12
Accuracy	$5 \mathrm{e}-5$	
Ripple	$5 \mathrm{e}-5$	
Total length	m	10
Gap height	mm	$10-50$
Bunch spacing	ns	200

