Space charge effect in the ILC Damping Rings estimated by SAD

8/11/2005 K. Oide(KEK) Presented by Y. Ohnishi @ WG3b

Many thanks to whom helped this work, eps. H. Koiso, K. Kubo, M. Kuriki, K. Ohmi, M. Venturini, A. Wolski, K. Yokoya

SAD = Strategic Accelerator Design, developed at KEK, since 1986. http://acc-physics.kek.jp/SAD/sad.html

Tracking Simulation

100 macro particles. Lattice tune = (76.31, 41.29)

(1) The equilibrium emittance is calculated by the equilibrium beam envelope method, including the space charge force, assuming the minimum vertical emittance 1 pm.

(2) Track particles with strong-weak model. Space charge kick at entrance of each element, assuming Gaussian.

3D symplectic map for the space charge, with an approximated potential $U(x,y,z) = f(x,y)exp(-z^2/2)$

• About 1-2 sec/turn by 2.5 GHz G5 Mac. Space charge takes 10% of the total cpu time.

Tracking Simulation (cont'd)

More long-range up to 30 k turns w/o radiation !

The emittance blowup (diffusion) continues if radiation is turned off.

n_d ×

n n_d: damping turns

Dogbone (S-shape, no coupling bump)

Dogbone (S-shape, original coupling bump)

Dogbone (S-shape, round coupling bump)

6

Dogbone (C-shape, round coupling bump)

Dogbone (S-shape, round coupling bump)

OCS (6.1 km)

Vertical Emittance

BRU (6.4 km, 3.74 GeV

Dogbone-S (No Coupling Bump)

Dogbone-S (Coupling Bump)

Dogbone-C (Coupling Bump)

OCS (6.1 km)

BRU (6.4 km, 3.74 GeV)

16

Summary

- Dogbones (17 km) and MCH (16 km) look safe for the space charge with the "round" coupling bump.
- OCS (6.1 km) is the safest.
- BRU at 3.74 GeV, the tune space with safe emittance growth is very small. Dogbone without the coupling bump too.
- The structure resonances should be avoided.
 - C or S-shape of Dogbone is not critical for space charge if good working point can be chosen, respectively.
- The detail of the lattices, such as the way how to change the tunes, may affect the strengths of the resonances.
- Need more study with lattice errors, etc.