## ILC Damping Rings Stability Study (work in progress)

G. Stupakov, K. Bane and S. Heifets, SLAC

2005 ALCPG \& ILC Snowmass workshop
August 14-17, 2005

## Setup

Our goal was to have a setup which allows a quick estimate of beam stability for various designs of the ILC DRs.

The current setup is based on a collection of Mathematica notebooks.
The advantage of using Mathematica:

- Compact code
- Powerful symbolic and graphical capabilities
- Easy documentation of algorithms used in the code
- Transparent handling of the system of units and dimensional variables

We plan to have a tool that is similar to (and better than) the old ZAP computer program.

## Setup

## Mathematica notebooks:

- Formulate an impedance model for each ring (resistive wall, HOMs, a broadband impedance)
- Compute transverse mode coupling instability (Satoh-Chin model)
- Compute transverse and longitudinal multibunch instabilities

For microwave instability, we plan to use the Oide code (or its modification) including Haissinki equilibrium into analysis.

We also have available a Vlasov-Fokker-Planck solver (developed by R. Warnock) that allows to track nonlinear evolution of the single bunch longitudinal instability.

At this point we use input parameters from DRMegaTable (of 7/5/05) and A. Wolski's paper LBNL-57045-CBP Tech Note-331.

## Impedance - resistive wall

We assume aluminum wall of round cross section. The longitudinal impedance and the wake are:

$$
\begin{aligned}
Z_{R W, \text { Iong }}(f) & =L \frac{1-i}{c b} \sqrt{\frac{f}{\sigma}} \\
w_{\text {RW,long }}(z) & =-L \frac{1}{2 \pi b} \sqrt{\frac{c}{z^{3} \sigma}}
\end{aligned}
$$

We arbitrarily assume $b=2 \mathrm{~cm}$ for all machines, except for BRU and MCH . For those rings we find $b_{\text {arc }}, b_{\text {wiggler }}$, and $b_{\text {straight }}$ in A. Wolski's paper LBNL-57045-CBP Tech Note-331.

Note singularity of the wake function at $z=0$, which should be properly treated in calculation of the microwave instability.

## Impedance - HOMs

## Impedance of an HOM mode

$$
Z_{\text {long }, \text { mode }}(f)=\frac{R}{1-i Q\left(f / f_{0}-f_{0} / f\right)}
$$

HOM modes at CESR SC cavity, $f_{\text {fund. mode }}=500 \mathrm{MHz}$, computed with CLANS (from S. Belomestnykh thesis, 1998).



Typical Q are from 100 to 1000.

## Impedance - HOMs

The empirical value for the total loss factor of all HOMs is (from S . Belomestnykh, "On the BB1 Cryomodule Loss Factor Calculations", SRF 990714-08)

$$
\kappa_{\text {loss }}=7.73\left(\frac{\sigma_{z}}{\mathrm{~mm}}\right)^{-1.118} \frac{\mathrm{~V}}{\mathrm{pC}}
$$

We assume the voltage 2 MV per cavity ( CESR - 1.8 MV ; KEKB 1.6/2.0 MV; LHC - 2.0 MV) and compute the number of cavities in the ring from the total voltage.

## Broadband impedance in the ring

The broadband impedance describes a contribution from many small elements in the ring, such as BPMs, transitions, flanges, bellows, etc. It also has a resistive component in it. We use the model proposed by Heifets and Chao (SLAC-PUB-8398, 2000):

$$
Z_{\text {induc,long }}(f)=-\frac{z_{0}}{4 \pi} \frac{i \omega \mathcal{L} / c}{(1-i \omega T)^{3 / 2}}
$$

where $\mathcal{L}$ is the inductance, and $T$ is a parameter with the dimension of time. For $\omega \gg 1 / T, Z_{\text {induc, long }} \propto \omega^{-3 / 2}$ which is the diffraction limit for a high frequency impedance.

For PEP-II $\mathcal{L} \approx 100 \mathrm{nH}$. We assume that this impedance is distributed uniformly over the ring and get a value per cell: $100 / 146=0.68 \mathrm{nH}$. We are trying to figure out the number of cells in each ring using the averaged beta functions. We do not rescale the value of $\mathcal{L}$ to account for various pipe radius (?).

## Mode Coupling

## We satoh Satoh-Chin equations.

$\alpha_{h}=-i \frac{N c^{3} r_{e}}{4 \pi C \gamma \omega_{\beta} \omega_{s} \sigma_{z}} \beta_{h}(\lambda) \sum_{h^{\prime}=0}^{\infty} \alpha_{h^{\prime}} \int d \chi Z_{\perp}(\chi) F_{h^{\prime}}\left(\chi-\chi_{\xi}\right) F_{h}\left(\chi-\chi_{\xi}\right)$
where $\chi=\omega \sigma_{z} / c, \chi_{\xi}=\omega_{\beta} \xi \sigma_{z} / c \eta, \lambda=\left(\Omega-\omega_{\beta}\right) / \omega_{s}$,
$F_{h}(\omega)=\frac{\omega^{h}}{\sqrt{2^{h} h!}} e^{-\omega^{2} / 2}, \beta_{0}=\frac{1}{\lambda}, \beta_{1}=\frac{2 \lambda}{\lambda^{2}-1}, \beta_{2}=\frac{2 \lambda}{\lambda^{2}-4}+\frac{2}{\lambda}, \ldots$


Result for the BRU ring for zero chromaticity

## Coupled Bunch Instabilities

We use formulation in terms of wakes rather than impedances. Those series converge faster. We assume uniform distribution of bunches over the ring.

Longitudinal CBI:

$$
\frac{\delta \omega}{\omega_{s}}=-\frac{N_{\text {part }} r_{0} \eta c}{2 \omega_{s}^{2} \gamma T} \sum_{k=1}^{\infty} w^{\prime}\left(k s_{b}\right)\left[e^{i k\left(2 \pi / / M+\omega_{s} s_{b} / c\right)}-1\right]
$$

where $s_{b}=C / N_{b}$ is the distance between the bunches.
Transverse CBI:

$$
\frac{\delta \omega}{\omega_{s}}=-\frac{\beta N_{\text {part }} r_{0}}{2 \gamma T \omega_{\beta}} \sum_{k=1}^{\infty} w_{\perp}\left(k s_{b}\right) e^{i k\left(2 \pi / / M+\omega_{\beta} s_{b} / c\right)}
$$

## Microwave Instability

The simplest approach is to compute the Keill-Schnell-Boussard creterion which gives $Z / n$. We plan to use the Oide code that solves eigenmode equations and finds the threshold of the instabilities.


Calculation of microwave instability threshold for PPA. The growth rate equals $\tau_{l}$ at $N_{p}=1.75 \times 10^{10}$ with $\omega=1.89 \times \omega_{s}$.

## Discussion and Plans

- The existing model of impedance is incomplete-we need more input for vacuum pipe radii, cavities HOMs, etc.
- We need a better understanding of the multibunch instabilities in the situation when we do not have detailed information about HOMs
- More work is needed with the microwave instability
- We plan to add estimations of the CSR instability to the code

