

Cornell University Laboratory for Elementary-Particle Physics

Dynamic Aperture Studies at Cornell: 7 Lattices, 3 Wigglers

Jeremy Urban August 16th, 2005

Description of Simulations

- •Performed using BMAD
 - Tracking using 3rd order Taylor Map
 - Radiation Damping and Excitation Capable
- •Types of Results
 - Frequency Map Analysis
 - Dynamic Aperture
- •Simulation Parameters

Lattices were compared on:

- Wigglers
- Multipole Errors
- Energy Aperture
- Match Tune with Matrix Transformation
- Sextupoles Untouched in Lattices
- Synchrotron Oscillations

GOAL: Cross-checking of codes between different laboratories and generation of baseline results for seven viable damping ring lattice options.

Bmad Wiggler Models

- **Model A: Linear** -The linear wiggler model is composed of a <u>series of dipole magnets</u> (or, nearly equivalently, a 1st order Taylor map of the full nonlinear model). This model includes the vertical linear focusing and damping provided by the wigglers but <u>none of the higher order beam dynamics</u> of a real wiggler.
- **Model B: Ideal Nonlinear -** The ideal nonlinear wiggler model is a single element in Bmad which represents an <u>infinitely wide wiggler</u> magnet with a vertical magnetic field varying sinusoidally in the longitudinal direction. This model includes linear focusing, plus the <u>vertical octupole term</u> intrinsic in all wiggler magnets, which produces the dominant nonlinearity: the quadratic dependence of the vertical tune shift on vertical amplitude.
- **Model C: Full Nonlinear** The full nonlinear wiggler model is an arbitrary order Taylor map in Bmad which comes from the <u>symplectic integration of an analytic expression</u> for the full wiggler field. This model includes the nonlinearities of the ideal nonlinear model plus all of the nonlinearities in the field coming from <u>a realistic wiggler magnet with finite width poles, end poles, and fringe fields</u>.

Wiggler Fitting Procedure

$$B_{fit} = \sum_{n=1}^{N} B_n(x, y, s; C_n, k_{xn}, k_{sn}, \phi_{sn}, f_n)$$

Note: $k_{xn} \& k_{sn}$ are free parameters in the fit, not = $2n\pi/\lambda$

$$B_x = -C \frac{k_x}{k_y} \sin(k_x x) \sinh(k_y y) \cos(k_s s + \phi_s)$$

$$f_n = 1: \qquad B_y = C \cos(k_x x) \cosh(k_y y) \cos(k_s s + \phi_s)$$

$$B_s = -C \frac{k_s}{k_y} \cos(k_x x) \sinh(k_y y) \sin(k_s s + \phi_s)$$

$$k_y^2 = k_x^2 + k_s^2$$

 $f_n=2$ and $f_n=3$ select different combinations for fit

CESR-c Wiggler

- Energy = 1.88 GeV
- Superferric
- 8-Pole Wiggler
- Length = 1.3 m
- Peak Field = 2.1 T
- Horizontal Uniformity = 90 mm
- Period = 400 mm
- Gap Height = 76 mm
- Pole Width = 238 mm
- Realistic End Poles

A modified version of the CESR-c wiggler was developed to match the peak field and length of the TESLA TDR wiggler. Physical dimensions unchanged.

Non-Linear Wiggler Results

Results from PAC2005 showed the TESLA TDR wiggler was unsatisfactory. All wiggler studies performed with the CESR-c wiggler.

The CESR-c wiggler has a large aperture which produces fields well approximated by the Ideal Non-Linear Wiggler Model = Single Mode Wiggler Model.

Multipole Error Results

Using systematic and random multipole errors on dipoles, quarupoles, and sextupoles, as determined from PEP-II & SPEAR3 magnets by Y. Cai.

Energy Offset Results

BRU

	Length	6.333 km
\bigcirc	Energy	3.740 GeV
	Arc Cell	FODO
	Q _x	65.78
	Q _y	66.41
	σ _z	9.22 mm
	τ_x	1,208 Turns

0

DAS

Length	17.014 km
Energy	5.000 GeV
Arc Cell	PI
Q _x	83.73
Q _y	83.65
σ _z	5.69 mm
τ	475 Turns

Multipole Errors w/ Non-Linear Wiggler

Length	15.935 km
Energy	5.000 GeV
Arc Cell	FODO
Q _x	75.78
Q _y	76.41
σ	9.35 mm
τ_x	505 Turns

Y (mm)

Length	6.114 km
Energy	5.066 GeV
Arc Cell	TME
Q _x	50.84
Q _y	40.80
σ _z	5.66 mm
τ_x	1,086 Turns

OTW

Length	3.224 km
Energy	5.000 GeV
Arc Cell	TME
Q _x	45.16
Q _y	24.16
σ _z	5.77 mm
τ_x	1,130 Turns

PPA

Length	2.824 km
Energy	5.000 GeV
Arc Cell	PI
Q _x	47.81
Q _y	47.68
σ _z	5.90 mm
τ	2,127 Turns

Multipole Errors w/ Non-Linear Wiggler 25 $\Delta p/p = 0.0\%$ $\Delta p/p = 0.5\%$ $\Delta p/p = 1.0\%$ $3\sigma_{e+,inj}$ **Linear Wiggler Non-Linear Wiggler** ----20 1 5 get, ini 0.8 15 Y (mm) 0.6 o 10 0.4 0.2 5 0 0.2 0.8 0.2 0.8 0.4 0.6 1 0 0 0.4 0.5 -40 -30 -20 -10 0 10 20 30 40 Q, 0, X (mm)

TESLA

Length	17.001 km
Energy	5.000 GeV
Arc Cell	TME
Q _x	76.31
Q _y	41.18
σ _z	5.77 mm
τ	491 Turns

Multipole Errors w/ Non-Linear Wiggler

Conclusions

- See full results at: www.lepp.cornell.edu/~jtu2/eval_dr/
- CESR-c wiggler does not significantly degrade dynamic aperture for any lattice
- Multipole errors dominate dynamic aperture reduction over wiggler non-linearities
- Systematic approach for analyzing lattices developed with Bmad
- Benchmarking of simulation codes progressing well, agreement found across time-zones
- Lattice choice? PPA and OCS are potentials, see other talks, listen to other task-forces, and discuss at Snowmass