

ILC Polarized Electron Source R&D at SLAC

A. Brachmann, J. Clendenin, T. Maruyama, K. Ioakeimidi

Snowmass '05

<u>Overview</u>

- Source Parameters
- Drive Laser System
- Photocathode
- DC and RF Electron Gun Development Plans
- Bunching and Pre-acceleration, Polarization Control

Source Parameters

Parameter	Symbol	Value	Unit
Electrons per micro bunch	n _e	4*10 ^{10[1]}	Number
Number of micro bunches	N _e	2820	Number
Micro bunch repetition rate	Γ _{μb}	3	MHz
Macro bunch repetition rate	F _{mb}	5	Hz
Micro bunch charge at source	С	6.4	nC
Micro bunch length at source	Δt	2	ns
Peak current in µbunch at source	l _{avg}	3.2	A
Energy stability	S	< 5	% rms
Electron polarization	Ре	90	%
Photocathode Quantum Efficiency	QE	1	%
Drive laser wavelength	λ	780 (tunable)	nm
Micro pulse laser energy at cathode	E	2	μJ

[1] twice the charge required at the IP

Polarized Electron Source Drive Laser

- Baseline: Laser system for DC Gun that generates pulse train and charge from photocathode with 0.5% QE
- Principles of technology similar to TTF Gun drive laser but different amplifier material and pulse length (for DC gun)
- Laser system is not commercially available:
 - In house development
 - SBIR/STTR
 - Academic collaboration
- Use of SLAC's upgraded 'Injector Test Facility' for laser development
- ➢ For polarized RF − Gun drive laser system:
 - Same principles as above
 - Picosecond micro pulse a higher peak power for identical electron number

PES Drive Laser – Possible Scheme

- Choice of laser material depends on cathode requirements:
 - Oscillator: Ti:Sapphire (must generate pulse train)
 - Amplifier: Ti:Sapphire Cr:LiCAF combination thereof
- > Pulse train generation \rightarrow next slide
- Temporal pulse stretching and shaping required to overcome space charge limit of DC – gun
- Issue: Response of photocathode to bandwidth and chirp?

3 MHz Pulse Train Generation

TTF drive laser system at DESY

Micro - Pulse Laser Energy Requirement

$$E = \frac{n_e \bullet h \bullet c}{QE \bullet \lambda \bullet e}$$

For $n_e = 4 * 10^{10}$ (twice n_e required at IP), QE = 0.005 at $\lambda = 800$ nm

 \rightarrow 2 µJ at cathode

Assuming transport efficiency of 80 %, helicity control losses of 10 %, pulse shaping efficiency of 50 %, laser amplifier must produce ~ 5.5μ J.

Source Drive Laser issues

(applicable to both Gun options)

Issue	Status	Comments
Mode-locked oscillator	\checkmark	Ti:Sapphire oscillator readily available
Locking to external frequency	\checkmark	e.g. SPPS laser
Pulse train generation	√ (?)	intra-cavity or external AO/EO techniques, limited commercial availability Vendor cooperation or in house development
Pulse train amplification	?	Must be demonstrated, R&D required
Temporal stretching of µ-pulse	\checkmark	Stretching factor ~ 1000 \rightarrow Grating techniques
Helicity Control	\checkmark	E158 experiment
Details	?	μ - Pulse shape (Rise & Fall time, Flatness) Pulse Train Shape Amplitude stability Reliability

Polarized DC Electron Gun R&D

- \succ SLC Gun:
 - Demonstrate pulse train extraction from cathode
 - Continue Photocathode R&D
 - Charge limit of SLC gun is ~ 11 A (peak current) at 120 kV
 - (Current ILC design calls for e- energy at Gun of 120 500 keV)
- Improved HV Performance of DC Gun
 - Reduction of space charge limitations (see Nagoya, Cornell, J-Lab)
 - Electrode materials (Ti, Mo) and design (see Nagoya)
 - Improved vacuum performance beyond 10⁻¹² Torr to eliminated ion and electron

back-bombardment of cathode

Polarized RF Electron Gun R&D

Status:

- Cryogenic cooling approach (see talk by Fliller)
- PWT Gun (see talk by Yu)
- Issue: e⁻ back-bombardment of cathode (field emission, vacuum)
- Future Polarized L-band RF Gun Project at SLAC
 - Proof of principle
 - Challenges:
 - Vacuum conditions
 - Cathode bombardment by back accelerated electrons (vacuum, field emission, secondary e⁻)
 - Cathode in magnetic and RF field (RF processing)?
 - Loadlock
 - Experimental program using the L-band RF in SLAC's Endstation 'B'

Status of Photocathode R&D

Strong R&D program at SLAC:

See talk by Naoto Yamamoto (Nagoya University)

<u>Open issues</u>

- Bunching and Pre-acceleration
- Polarization Control
- \rightarrow Initial phase of simulations
- \rightarrow Limited manpower and resources

Please join the

ILC Polarized Electron Source Study Group!

http://www-project.slac.stanford.edu/ilc/acceldev/injector/ILCPES/index.htm

Upcoming Workshop:

XI-th International Workshop on Polarized Sources and Targets, Nov. 14-17, Tokyo/Japan (Registration deadline: 08/31/05) http://www.cns.s.u-tokyo.ac.jp/pst05/