KURIKI Masao

Conventional Positron Production Possible Risk and R&D / IPPAK

KURIKI Masao (KEK)

- Possible risk
- ▲ IPPAK experiment
- Summary

Possible Risk on Conventional Scheme

A Drive beam source : No Risk.

- It could be identical to TTF type RF gun.
- ▲ Driver linac: No Risk.
 - It could be identical to ILC main linac.
- Production target : Risk.
 - Because of the huge amount of the beam in a pulse, target break is possible.

KURIKI Masao

Capture section : Risk.

- The large radiation flux comes from the target. Need to qualify the radiation hardness of the used material.
- 1ms operation of L-band warm structure with such high gradient is not confirmed.
- ▲ Injector linac : No Risk.
 - The cavity iris is even large to avoid frequent quenching with the beam operation failure.

Target Damage

- This is the largest risk in the conventional scheme.
- Target break threshold is not understood well.
 -> IPPAK
- ▲ There are several ways to reduce the risk.
 - Rotating target.
 - Pulse lengthening.
 - Alternative target system.

Pulse Lengthening -Naive case-

- ▲ An operation mode with a large bunch spacing giving a long pulse, e.g. 2ms pulse with 620ns spacing.
- ▲ It relieves the target damage, but several trade offs.
- ▲ Capture section :
 - Long pulse operation of the pulsed magnet might be difficult.
 - Long pulse operation of L-band warm cavities might be difficult. Need to reduce the input power which lower the capture efficiency.

Pulse Lengthening - Pulsed Operation -

- ▲ The naive pulse lengthening (e.g. 2ms) might cause other problems, e.g. L-band structure operation.
- Pulsed operation solves this problem because of the short pulse duration.
 - 1 pulse : 280 x 3nC bunches with 620 ns spacing, 143us duration.
 - This pulse is repeated 10 times with 10ms interval: 100Hz operation, it takes 100ms to make a full pulse of the main linac.

Cost of Pulse Lengthening - Pulsed Operation -

- The pulsed operation solves the difficulty on the pulsed magnet and L-band cavities by increasing the average cooling ability.
- ▲ That is true for the RF-Gun.
- Heat-load to SC-linac is increased. It is not a technical difficulty, but we have to increase the cooling power.
- ▲ The damping time is enough unless a long DR.

Summary for the Pulse Lengthening

- ▲ It is a relief for the possible target damage.
- ▲ There are many trade offs in the naive lengthening. It might introduce new risks.
- ▲ The pulsed operation solves the difficulties by paying an additional cost for the cooling power.

ILC Positron Project At KEKB IPPAK 一泊

A By injecting the KEKB stored beam into a test target, damages on the ILC e+ production target is reproduced.

- KEKB mode : just inject KEKB stored beam.
- ILC mode : modify the abort kicker and bunch fill pattern to reproduce more realistic ILC drive beam.

KURIKI Masao

Possible Risk and R&D (*Conventional scheme*)

~6.1mm

~10mm

Dump pattern KEKB-HER: 8GeV, 10nC, 1300 bunches (1300mA) Because of "Step size" variation, the energy density is varied from 1810 to 13700 J/mm2. Dump Layout Beam

Beam image

10

Experimental Modes

▲ KEKB mode

- No modification from the KEKB operation except the stored current.
- The energy density is reproduced, but it is made with a much shorter duration.
- ▲ ILC mode
 - Turning off the vertical kicker.
 - Fill 1 or 2 bunches only at zero-cross.
 - These bunches hit a same spot every 1430ns .
 - Reproduce density and flux.

KURIKI Masao

Density and Flux

	Mode	KEKB current (mA)	Energy density (J/mm2)	Energy flux (J/us)	
ΙΡΡΑΚ	KEKB390	390	540-4100	3400	
	ILC2	14	1120	130.54	
	ILC1	7	560	65.27	
	ILC0.7	4.9	392	45.69	

ILC	Bunch spacing (ns)	Target rotation (m/s)	Energy density (J/mm2)	Energy flux (J/us)
	310	50	1270	58.06
	310	100	630	58.06
	310	150	423.33	58.06
	310	360	176.39	58.06
	200	50	1905	90
	400	50	472.5	45

Investigation

- Investigation with an optical scope (up to x300).
- ▲ Burned out. Many cracks.
- Cracks are in a same direction.

KEKB mod(390mA)

Upstream

KURIKI Masao

Possible Risk and R&D (*Conventional scheme*)

ILC2

No crack was observed.
 A colored area was observed.
 A clear spot on the thermal paper.

Thermal paper

KURIKI Masao

Possible Risk and R&D (*Conventional scheme*)

ILC1

- Unclear spot was observed at the downstream surface.
- A tiny spot was observed on the thermal paper.

Thermal paper

ILC 0.7

Nothing on the target.Nothing on the paper.

10mm Upstream

Thermal paper

KURIKI Masao

Summary of Results

	Mode	KEKB current (mA)	Energy density (J/mm2)	Energy flux (J/us)	Result
IPPAK	KEKB390	390	540-4100	3400	Damaged
	ILC2	14	1120	130.54	Colored
	ILC1	7	560	65.27	Some
	ILC0.7	4.9	392	45.69	None

ILC	Bunch spacing (ns)	Target rotation (m/s)	Energy density (J/mm2)	Energy flux (J/us)
	310	50	1270	58.06
	310	100	630	58.06
	310	150	423.33	58.06
	310	360	176.39	58.06
	200	50	1905	90
	400	50	472.5	45

IPPAK Conclusion

- ▲ IPPAK carried out at KEKB, did not dis-confirm the feasibility of the conventional method.
- If the result of IPPAK can extrapolate to ILC positron target with helps of simulations and additional experiments, the target load corresponding to those in ILC1 and 0.7 are acceptable.
 - ILC1 : 110m/s rotation and 3nC/bunch with 250ns spacing.
 - ILC07 : 160m/s rotation and 3nC/bunch with 360ns spacing.

- ▲ To fully establish the reliability, fatigue on the target has to be understood well.
- ▲ Generally, fatigue is a phenomena developing small cracks in metal caused by stress.
- ▲ The cracks are born in sub-micron scale. They grow up to more than 10 um.
- The fatigue progress can be accounted as number and size of the cracks.

Fatigue on Production Target

- Assuming 1m radius rotating target with 100m/s speed.
- ▲ One pulse (1ms) spreads 10cm length.
- ▲ On a spot in the target, the beam hits in 0.08 Hz. The beam hits 2.4M times in a year operation.
- ▲ If it was confirmed that the target resists 2.4M times impacts, the system is feasible.
- ▲ This number varies according to the rotating speed.

Reproduce Fatigue on Target

- ▲ The fatigue can be reproduced experimentally with a mechanical (dynamic) stress.
- Fatigue by several Mega times stresses can be easily examined.
- The stress made by the injected beam, can be estimated with a computer simulation.
- Several 100 shots with KEKB beam, can be made. The consistency between the effects by the mechanical stress and the beam stress, can be confirmed.

Summary

- ▲ In Conventional method, the target damage is the biggest risk.
- ▲ Pulsed mode operation eases the risk.
- ▲ IPPAK was carried out at KEKB successfully. It did not dis-confirm the conventional method.
- Fatigue on the target has to be understood well to establish fully the feasibility. It can be made with the mechanical stress experiment and IPPAK2.

KURIKI Masao

Backup Slides

L-Band Warm Cavity

- ▲ The L-band cavities in the capture section has to be operated in 1ms duration with 14.5MV/m gradient.
- ▲ It is essential to achieve an enough capture efficiency.
- It is possible according to a simulation, but it is never demonstrated.
- ▲ If this high-field operation was not achieved,
 - Lower the field : Less positron yield.
 - Shorten the pulse : Modify the bunch spacing. Need reoptimization.

Rotating Target

- ▲ A first rotating target can reduce the damage by spreading the energy density.
- 360 m/s rotation (3600 rpm) is technically possible. This high speed is even to prevent the fatigue for W-Re. (-> W. Stein)
- ▲ Need to qualify the technical detail.

Alternative Target

- ▲ Good target material is
 - High Z and A
 - High density
 - Hard to damage
- ▲ Liquid target is good for the damage. Lead in BINP, mercury in SNS/JPARC.
- Their density is less than that of W or Re. It is not a silver bullet. Re-optimization is needed to meet the ILC requirements with those targets.

Spatial Resolution on Display

- Relative bunch position was observed by an alumina plate monitored with CCD camera and Display.
- ▲ In the display, 5mm tick on the alumina plate was 37mm. The magnification is 7.4.
- A Horizontal direction has additional magnification of 1.41 by 45 degree gradient to the beam axis.
- ▲ Total mag. 10.4 (horizontal) and 7.4 (vertical).
- ▲ Assuming the spatial resolution on the display is 2mm, the resolution is 0.19mm (horizontal) and 0.27mm (vertical).

Possible Risk and R&D (Conventional scheme) Bunch Adjustment (ILC Mode)

- Scan the displacement of 1st and 5th bunches with the bucket number. The displacement is minimized at the expected bucket.
- ▲ 7 bunches were adjusted one by one.
- ILC mode profile (core) : 1.36mm x 0.66 mm on the paper. If the core corresponds to FWHM, the profile is 0.58 x 0.28 mm in sigma which is consistent to the beam profile in KEKB ring.

Damage Threshold

- Damage threshold is not understood well.
- Experiment at SLAC (S. Ecklund, SLAC-CN-128)
- Damage threshold for short bunch : 20GeV, 16nC ~ 320J/mm² for W(75)Re(25) alloy.

Pulse Lengthening -Naive mode-

- An operation mode with a large bunch spacing giving a long pulse, e.g. 2ms pulse with 620ns spacing.
- ▲ It relieves the target damage, but several trade offs.
- ▲ RF Gun for driver linac:
 - Need to reduce the RF power of Gun cavity.
 - Need additional R&D for laser.

Cost of Pulse Lengthening

A Driver linac :

- Since the average current is reduced, average RF power to SC linac is also reduced.
- Coupling to SC linac becomes small. Less load to the coupler.
- Q value is however increased for less coupling. The cavity tuning becomes harder.
- Heat load is increased because of the long pulse. Extra cost, but not critical.

Cost of Pulse Lengthening

Capture section :

- Long pulse operation of the pulsed magnet might be difficult.
- Long pulse operation of L-band warm cavities might be difficult. Need to reduce the input power which lower the capture efficiency.
- A Positron Injector Linac :
 - Same trade offs as those in the driver linac.

- ▲ Test piece is fixed between two bars.
- ▲ One of the bar is oscillating with 10Hz.
- Because of the waisted shape, the stress concentrates there.
- ▲ 10 days run makes 8.4 M times stresses which are enough to examine the fatigue in the target.

The Beam Stress

- ▲ The experiment with the beam stress, can be carried out at KEKB with the same manner as IPPAK.
- ▲ A shot with 7mA storage current takes supposedly 3 minutes.
- ▲ 160 shots can be made within one shift (8hours).
- ▲ The dosed target can be compared with that by the mechanical stress to check the consistency.