

# Accelerator and RF System for ILC Positron Source

Second ILC Accelerator Workshop Snowmass, August 16, 2005 Juwen Wang SLAC



# Schematic Layout of Positron Source







- 1. Layout and Introduction.
- 2. Four Types of Accelerator Structures and Basic Properties.
- 3. Feasibility Studies
  - Cooling
  - Mode Spacing
  - Cell Phase Difference
  - RF Amplitude and Phase
  - RF Pulse Heating
- 4. Discussion on Positron Yield Initial Acceleration and Deceleration.
- 5. Design of Pre-Accelerator and PARMELA Simulation.
- 6. Preliminary Plan.

### People who also contribute to the studies at SLAC:

C. Adolphsen, G. Bowden, V. Dolgashev, R. Jones, E. Jongewaard, J. Lewandowski, Z. Li, T. Raubenheimer, R. Miller, C. Pearson.



- There have been a lot of studies and papers on design of the accelerator system for ILC positron source. We realize the great challenges in both electrical and mechanical aspects.
- Based on our experiences in normal conducting accelerator structures R&D, we have proposed this preliminary design. We would like to discuss it with our colleagues.



- 1. <u>Higher gradient (~ 15 MV/m) shorter structures</u>
  - Single  $\pi$  mode short SW structure or pair of half length sections fed with 3db hybrid for RF reflection cancellation.
  - It is simpler and feasible (stabilization) for 11-cavity short SW structure.
  - Lower pulse heating.
  - Larger iris size (60 mm diameter) with reasonable shunt impedance.
  - Efficient cooling design.

### 2. Lower gradient (~ 8 MV/m) longer structures

- TW constant gradient sections with higher phase advances per cell.
  - Using "phase advance per cell" as a knob to optimize the RF efficiency for different length of structure.
- It is simpler and feasible.
- Lower pulse heating.
- Easier cooling design.
- Easier for long solenoids solution.
- Less concern on multipacting and klystron protection from RF power reflection.
- 3. Four types of structures have been designed.



### 1.27 m long Simple π mode SW Structure



Cell profile

| Structure Type           | Simple $\pi$ |
|--------------------------|--------------|
| Cell Number              | 11           |
| Aperture 2a              | 60 mm        |
| Q                        | 29700        |
| Shunt impedance r        | 34.3 MΩ/m    |
| <b>E0</b> (8.6 MW input) | 15.2 MV/m    |



## 4.3 m long 3π/4 Mode "Regular" TW Structures



| Structure Type               | TW                 |
|------------------------------|--------------------|
| Cell Number                  | 50                 |
| Aperture 2a                  | 46 mm              |
| Attenuation T                | 0.98               |
| Q                            | 24842 - 21676      |
| Group velocity Vg/c          | 0.62% – 0.14%      |
| Shunt impedance r            | 48.60 – 39.45 MΩ/m |
| Filling time T <sub>f</sub>  | 5.3 μs             |
| Power Dissipation            | 8.2 kW/m           |
| E <sub>0</sub> (10 MW input) | 8.5 MV/m           |



## 4.3 m long 3π/4 Mode "Special" TW Structures



| Structure Type               | TW                 |
|------------------------------|--------------------|
| Cell Number                  | 50                 |
| Aperture 2a                  | 60 - 46 mm         |
| Attenuation T                | 0.65               |
| Q                            | 22396 - 20562      |
| Group velocity Vg/c          | 0.91% – 0.16%      |
| Shunt impedance r            | 36.98 – 36.04 MΩ/m |
| Filling time T <sub>f</sub>  | 3.44 µs            |
| Power Dissipation            | 7.2 kW/m           |
| E <sub>0</sub> (10 MW input) | 7.3 MV/m           |



Pair of 2.2 m long 3π/4 Mode TW Structures

The regular 4.3 meter-long structure can be cut in half to form two 2.2 meter structures driven in series, permitting a triplet or quad doublet every 2.5 meters.





International Linear Collider

at Stanford Linear Accelerator Center

### Thermal Simulation for Regular Cells of SW Structure



Design of Cooling Channels.

ANSYS thermal model with average RF losses (left) and thermal model with average RF and particle losses (right).

International Linear Collider

at Stanford Linear Accelerator Center

### Calculation of Frequency Detuning due to Heating



#### Deformation calculated from ANSYS



Frequency Perturbation calculation based on weighting function and ANSYS results

| Case                                     | Cavity detuning |
|------------------------------------------|-----------------|
| Average RF losses only                   | -20.4 kHz       |
| Average RF and particle losses           | -58.6 kHz       |
| Start of RF pulse, RF loss only          | -19.5 kHz       |
| End of RF pulse, RF loss only            | -23.3 kHz       |
| Transient detuning, RF only              | -3.9 kHz        |
| Start of RF pulse, RF and particle loss  | -53.8 kHz       |
| End of RF pulse, RF and particle loss    | -68.9 kHz       |
| Transient detuning, RF and particle loss | -15.1 kHz       |

#### \* 6.5 m/s flow speed and 62.4 GPM / full cell



### Heating from RF and Particle Losses

## Average RF heating at 14.8 MV/m with 5 Hz, 1ms pulses.

#### Average particle heating For conventional source



Average Particle Heating



3.5 kW / full cell

6.8 kW/ full cell



Mode Spacing

For N coupled resonators:

$$\omega_q^2 = \frac{\omega_0^2}{1 + k \cos \frac{\pi q}{N}}$$
  $q = 0, 1, 2, ... N$ 

The mode spacing between  $\boldsymbol{\pi}$  and nearest mode is

$$\frac{\Delta\omega}{\omega} \approx \frac{k\pi^2}{4N^2}$$

For examples,

In our SW20PI structures built earlier, the spacing between  $\pi$  mode and 13  $\pi$ /14 mode is 7 MHz, 6  $\pi$ /7 mode is 28 MHz.

In L-Band 11-cell SW structure, coupling coefficient k=0.0125 and the spacing between  $\pi$  mode and  $9\pi/10$  mode is 0.4 MHz,  $4\pi/5$  mode is 1.6 MHz.



There are phase differences along structure due to the RF feed and loss along the structure.

The phase difference between neighbor cells is

$$\Phi_n - \Phi_{n-1} = \frac{\sqrt{1-k}}{kQ} [2(N-1) + 1]$$

The total phase difference is

$$\Delta \Phi = \frac{\sqrt{1-k}}{kQ} n^2$$

Linear increasing towards driving cell

Total phase change ~ square of cell number counting from driving cell



International Linear Collider

at Stanford Linear Accelerator Center

## **Cell Phase Difference II**



Phase - 180 \*cell # [deg] 3 2 0 0 1 2 3 4 5 6 7 8 9 10 Cell #

In our SW20PI 15-cell SW structures, the S11 was measured while a small bead puling through the structure, the vector was plotted as shown.

> Calculation:  $\Delta \Phi \sim 6.2^{\circ}$ Measurement  $\Delta \Phi \sim 7.5^{\circ}$

For 11-cell L-Band structure, The calculated  $\Delta \Phi \sim 3.8^{\circ}$ .

Equivalent circuit simulation:  $\Delta \Phi \sim 4.6^{\circ}$ , (cos 4.6° =0.997 – negligible influence).



Reflected coefficient: 
$$\Gamma = -1 + \frac{2\beta}{\beta + 1 + j \frac{2Q_0\Delta f}{f}}$$

Phase shifting:

$$\Phi = Arg(\Gamma + 1) = \tan^{-1} \frac{2Q_0 \Delta f}{f(\beta + 1)}$$

For an example, at  $\beta$ =1 case:

$$\Gamma = -1 + \frac{1}{1 + j \frac{Q_0 \Delta f}{f}}$$

$$\Phi = \tan^{-1} \frac{Q_0 \Delta f}{f}$$

For present cooling design for capture section with large particle loss, the transient  $\Delta f$  due to1 ms RF pulses is 15.0 kHz (0.69° C), correspondingly,  $\Gamma^2 \sim 0.1$  and  $\Delta \Phi \sim 18^\circ$ .

- The operation temperature can be optimized.
- The transient temperatures change can be further reduced.
- No problem in water temperature stabilization.
  - -- experience for SLC accelerator structures



### Power Reflection due to Frequency Deviation





### Phase Change due to Frequency Deviation





# Field Amplitude Change due to Frequency Deviation

From the perturbation solution for a resonator chain matrix, the effect to amplitude due to detuning errors:

$$\frac{\delta X^{\pi}(n)}{X^{\pi}(n)} = \sum_{p=1}^{N} \frac{\widetilde{\varepsilon}_{p}(1-k)\cos\pi\frac{pn}{N}}{k(1-\cos\pi\frac{pn}{N})}$$

Simply to estimate for the simplest and worst case of  $\Delta f \sim 17$  kHz, the average amplitude change ~ 5.0%.

– No problem for tuning accuracy from the X-Band experiences and transient temperature fluctuation.



### S<sub>11</sub> Change due to Cell Frequency Deviation





# S<sub>11</sub> Field Amplitude Change due to Frequency Deviation

#### Shifting frequency of first five cells





Total Acceleration Change due to Frequency Deviation

### Shifting frequency of first five cells

Normalized acceleration 1.1 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1  $\frac{0}{100}$ 50 -500 100 df [kHz]

Change of acceleration for fixed power, fixed frequency and optimal phase shift.

### Shifting frequency of every cell



Change of acceleration for fixed power, fixed frequency and optimal phase shift. International Linear Collider at Stanford Linear Accelerator Center

# Field Amplitude Change

for RMS 40 kHz Random Cell-To-Cell Errors



The first, middle and last cell are tuned together with a systematic shift in the cell freqs,



A systematic shift is made in the all of the cell freqs (tuning via water cooling),



Freq tuning required of the three cells



# **RF Pulse Heating**



The maximum Ht along cell profile is 43.8 kA/m for Ea=15 MV/m. The maximum ΔT is ~8.5°C in the outer wall. International Linear Collider at Stanford Linear Accelerator Center

# The principle of Initial Deceleration Scheme

In a phase velocity Vp=c TW structure, the equation for the particle orbit in phase space is

$$\cos\theta - \cos\theta_{\infty} = \frac{2\pi m_0 c^2}{eE_0 \lambda} \left[ \sqrt{p^2 + 1} - p \right] = \frac{2\pi m_0 c^2}{eE_0 \lambda} \sqrt{\frac{1 - \beta_e}{1 + \beta_e}}$$

Where E<sub>0</sub> is accelerating gradient and p is normalized momentum expressed by

$$p = \gamma \beta_e = \sqrt{\gamma^2 - 1}$$

The approach is initially decelerating the positrons and arranging the phase and amplitude of the fields so that the distribution in longitudinal phase space of the incoming positrons lay along one of the orbits in longitudinal phase space. Thus the positrons approached a small spread in asymptotic phase as their energy increased.



Longitudinal phase space of positrons from target in a phase velocity Vp=C TW structure



# Increase of Positron Yield by Initial Deceleration

#### **PARMELA Simulation:**

Superconducting coils with optimized tapered magnetic field,

13299 e+ from shower in target,

TW wave, acceleration with 15 MV/m and deceleration with 5.5 MV/m,

Collimated in aperture for 0.03 m-rad emittance without bunch compression,

Collimated in phase and energy for 1% and 2% spectra.



**Initial Acceleration Case** 

**Initial Deceleration Case** 

International Linear Collider at Stanford Linear Accelerator Center

## Capture Region for Conventional Positron Source

Layout of the capture region for conventional positron source in the acceleration scheme.





Solenoid

International Linear Collider at Stanford Linear Accelerator Center

### Capture Region for Undulator Based Positron Source

Layout of the capture region for undulator based positron source in the acceleration scheme.







International Linear Collider

at Stanford Linear Accelerator Center

### Positron Capture Simulation with Initial Acceleration



PARMELA simulation of the positron capture for the case of initial acceleration. The right four plots show the acceptable positrons by the damping ring. International Linear Collider

at Stanford Linear Accelerator Center

### Positron Capture Simulation with Initial Deceleration



PARMELA simulation of the positron capture for case of initial deceleration. The right four plots show the acceptable positrons by the damping ring. Yield of two can be obtained for 30 degrees phase and 2% spectrum.



Based on our preliminary studies, we have concluded the merit and feasibility of structures design for the PPS. We plan to start with the fabrication and test of a short 5-cell SW test section.

## TH2095A or TH2104U klystron 5 MW peak power, 1 ms, 5 Hz.

| Cell Number               | 5           |
|---------------------------|-------------|
| Aperture 2a               | 60 mm       |
| Disk thickness            | 18 mm       |
| Q                         | 29700       |
| Shunt impedance r         | 34.3 MΩ/m   |
| Power needed at 15 MV/m   | 3.8 MW      |
| RF Pd at 15 MV/m          | 3.6 kW/cell |
| Particle Pd               | 6.8 kW/cell |
| ∆T (Average/Transient) °C | 2.0 / 0.69  |



International Linear Collider

at Stanford Linear Accelerator Center

## 5-Cell Test SW Structure



International Linear Collider at Stanford Linear Accelerator Center

### Installation of Test SW Structure



First test SW structure with a solenoid (used for 2104U and 2104C klystrons) on a girder.



### L-band Test Stand in End-station B at SLAC



12/2005

1/2006



- 1.We have a baseline design minimum or starting point.
- 2. More studies will be related to
  - Overall parameter adjustment of positron source,
  - Cost and feasibility,
  - Experimental results of test structures.
- 3. We would like to have your comments and input.