Summary of Cavity Preparation&Testing Discussion Lutz Lilje for ILC-WG5

Snowmass 2005

24.8.2005

- Focus on most critical preparation steps
- Give some idea on what should be done as R&D
 - Some kind of priorisation by BCD/ACD

- There are a lot (!) of red bullets

- Can we say who's doing what on which time schedule?

BCD/ACD developments for Cavities

- Several improvements are needed on both BCD/ACD
- A significant amount of R&D work is needed to resolve issues
 - Quality control of the processes of cavity preparation needs improvement

- BCD=EP, 6-800°C & EP
 - Need to confirm the amount for damage removal.
- ACD
 - Centrifugal barrel polishing 40 μm BCP
 μm + 750°C & EP 50μm to 75 μm
 - Is Mechanical better alternative?
 - Good for defect removal
 - Good initial surface roughness
 - Environmentally friendly
 - Q disease issue
 - 2. BCP & EP ????

- Electropolish improvements:
 - Control of HF concentrations during processing (sulphur)
 - Control of Nb content during processing other contaminants?
 - Are we working in the right part of the I-V curve?
 - dc
 - pulsed
 - Can we get the right current distributions for uniform etching?
 - Measure surface roughness as process QA can we do it?
 - Orientation? Horizontal vs. vertical
 - Other acid compositions (buffering); add water plus HF? Nitric acid?
 - Develop a technique to EP cavities in helium vessels (understand and minimize voltage drop along cavity)
 - Mass production
 - Acid recycling
 - Cost and environmental issues

- Determination of optimum post-etching rinse processes
 - Rinse fluid
 - Water
 - Output water quality parameters?
 - Hydrogen peroxide
 - Ozonated water
 - Alcohol
 - Duration?
 - Rinse & dump? Steady flow?
- Post-rinse handling
 - Manipulation
 - Cleaning of the outside of the cavity
 - Ultra-sound
 - HPR
 - Storage until HPR
 - baseline is to keep it full of water
 - air, vacuum, clean nitrogen, argon, ????

- Ultra-pure high-pressure water rinsing
 - Improve water quality with additional/better monitoring
 - Particulates both input and output streams
 - Total oxidizable carbon
 - Dissolved solids
 - Resistivity
 - Improve cleaning power
 - Optimize nozzle material, geometry, size
 - Optimize flow rates, impact angles
 - Optimize pressure
 - Investigate electrostatic charging
 - Change of oxide structure, monitoring needed
 - Optimize duration of rinse

- Post-HPR handling:
 - Drying procedures
 - Laminar flow in clean room (DESY, KEK, JLab)
 - Vacuum (DESY, KEK, JLab)
 - Understanding of the best Vacuum system needed
 - » Oil-free
 - » No particulate contamination
 - Heating
 - With evacuated cavity (KEK): 'In-situ' bake
 - Air bake
 - Alcohol rinse

- Assembly
 - Standardisation of cleaning methods for sub-components
 - Cf. Mass production
 - QA of particle counts etc.
 - Main power coupler:
 - » Can it be cleaned like the other components (before processing)?
 - Documentation of assembly procedures
 - QA of particle counts etc.
 - Training of people
- Bakeout at ~120° C
 - Optimize low-T bakeout temperature and time
 - Part of the drying process (KEK)
 - Air bakeout
- Backfill
 - Argon
 - Avoid nitride formation during tank welding
 - DESY
 - KEK: After RF test only Argon
 - Nitrogen
 - Jlab, DESY (single-cells), CEA ?
 - KEK: Before RF test

- High-temperature heat treatments
 - Integration of furnaces into clean room?
 - 600-800°C
 - Optimise temperature and duration
 - Attach furnaces to cleanroom
 - Cavity under separate vacuum
 - 1400°C
 - High RRR needed?
 - Data analysis of cell Eacc/RRR
 - High RRR sheets from supplier

Mass Production Issues for Preparation Process

- Simplify assembly procedures
- Reduction of hardware counts
- Minimize contact with humans
 - Tooling, Fixtures
 - Investigation of automation
- Determine processing equipment MTBF
- There is a need to develop QA processes to assess particulate contamination of the inner cavity surface

Testing developments

- R&D phase
 - Improve cold test diagnostics
 - Extend thermometry to all tests
 - Visible light monitoring of helium boiling
 - We need to do more post-test forensics
 - All passband modes measured
 - Data on dark current
 - VT:
 - Relation of X-rays to dark current???
 - Measure X-rays in all directions
 - Module test stand
 - Faraday cup

Test Sequence BCD

- BCD:
 - Vertical low-power test of all cavities
 - Measure 8 cavities in one cooldown
 - Measure all passband modes
 - Sorting ?
 - Different manufacturers for cavities and module (interface)
 - High-power test only few single cavities
 - All sub-components tested
 - Need to improve quality control of feed throughs, couplers, tuner motors
 - Module power test
 - First X % modules, then every Y module
 - Must include dark current measurement

Fabrication ACD developments

- EP half-cells
- Preparation of auxiliary components
 - Cleaning and handling kept consistent with cavity treatments
- Have we got the right gasket material?
- Can we improve flanges to reduce the likelihood of contamination?

Material ACD developments

- Investigate EP with single-crystal/large-grain material
 - Phonon peak
- Optimum heat transfer by reduction of Kapitza
- Investigation on Flux trap n Nb/Cu clad