Tunnel Options

- Consider two main options:
 - TESLA style: 1 tunnel with modulators in sparse support buildings
 - 2. 2 full tunnels with virtually all active equipment in the support tunnel

- Each option could be
 - a. In a deep tunnel
 - b. Near the surface (with support equipment on the surface)

Pros/cons of 1 vs 2

- Cost: favors 1. USTOS estimates 1 is 5% cheaper (about \$400M), then add 3% for availability improvements for a net 2%.
- Availability risk: favors 2. With same MTBFs, 1 tunnel is down 30.5% (or 22% with robotic repair) instead 17% for 2. Can make better MTBFs, but increases costs and carries risk.
- Commissioning: favors 2. Subtle electronics problems that require hands on with a scope and beam to understand will be very slow to solve.
- Pulse transformers disturb damping rings: favors
 2. only if pulse transformers are used.
- Commissioning/upgrade: favors 2. Installation in support tunnel can go on while commissioning/running occurs in accelerator tunnel.
- Unless one wants to improve the cost estimate, no further work is needed to decide on BCD.
- My conclusion:

Pros/cons of deep vs surface

- Cost: favors surface. Cut and cover construction is cheaper. I think civil group has numbers. Get them and put them here.
- Ease of finding site: favors deep. Sites with right topology and bareness are few are far between. Eased somewhat if can have vertical bends in the linac.
- My conclusion:

Carry both options until site is selected

Needed MTBF Improvements

	Improvement	Improvement	Improvement	
	factor A for 2	factor B for 1	factor C for 1	
	tunnel	tunnel undulator	tunnel undulator	
	conventional	e+ source, 6%	e+ source, 3%	Nominal MTBF
Device	e+ source	energy overhead	energy overhead	(hours)
magnets - water cooled	20	20	20	1,000,000
power supply controllers	10	50	50	100,000
flow switches	10	10	10	250,000
water instrumention near pump	10	10	30	30,000
power supplies	5	5	5	200,000
kicker pulser	5	5	5	100,000
coupler interlock sensors	5	5	5	1,000,000
collimators and beam stoppers	5	5	5	100,000
all electronics modules	3	10	10	100,000
AC breakers < 500 kW		10	10	360,000
vacuum valve controllers		5	5	190,000
regional MPS system		5	5	5,000
power supply - corrector		3	3	400,000
vacuum valves		3	3	1,000,000
water pumps		3	3	120,000
modulator			3	50,000
klystron - linac			5	40,000
coupler interlock electronics			5	1,000,000
linac energy overhead		3%		3%