

Effect of DIFFERENT QUAD CONFIGURATIONS on EMITTANCE DILUTION in ILC LATTICE

Nikolay Solyak Fermilab & Kirti Ranjan Fermilab and University of Delhi, India & Peter Tenenbaum Stanford Linear Accelerator Center

ILC workshop, Snowmass, August, 2005

NIKOL	AY S	OLYAł	<
-------	------	-------	---

USCold LC Main Linac Design

- ⇒ Linac Cryogenic system is divided into Cryomodules(CM), with 12 structures / CM
- \Rightarrow Magnet Optics : FODO lattice, with β phase advance of 60⁰ in each plane
- ⇒ Each quad has a Cavity style BPM and a Vertical Corrector magnet; horizontally focusing quads also have a nearby Horizontal Corrector magnet.

Main Linac Design

- ⇒ ~11 km length
- ⇒ 9 Cell structures at 1.3 GHz and 12 structures per cryostat
- ⇒ Total structures : 7920
- ⇒ Loaded Gradient : 30 MeV/m
- \Rightarrow Injection energy = 5.0 GeV
- ⇒ Initial Energy spread = 2.5 %
- ⇒ Extracted beam energy = 250.7 GeV

- Beam Conditions
 - ⇒ Bunch Charge: 2.0 x 10¹⁰ particles/bunch
 - \Rightarrow Bunch length = 300 μ m
 - ⇒ Normalized injection emittance: $\gamma \epsilon_{Y}$ =20 nm-rad

Emittance growth in linac $\Delta \gamma \epsilon_v \leq 10$ nm-rad

ab initio (Nominal) Installation Conditions

Tolerance	Vertical (y) plane	
BPM Offset w.r.t. Cryostat	300 µm ⁼	→ 30 µm
Quad offset w.r.t. Cryostat	300 µm	in launching
Quad Rotation w.r.t. Cryostat	300 µrad	(~7 BPM's)
Structure Offset w.r.t. Cryostat	300 µm	
Cryostat Offset w.r.t. Survey Line	200 µm	
Structure Pitch w.r.t. Cryostat	300 µrad	
Cryostat Pitch w.r.t. Survey Line	20 µrad	
BPM Resolution	1.0 µm	

- > BPM transverse position is fixed, and the BPM offset is w.r.t. Cryostat
- Only Single bunch used in studies
- > No Jitter in position, angle etc.; No Ground Motion and Feedback
- Steering is performed using Dipole Correctors.

- 8 configurations with diff. quad spacing (from 1 Quad / 1CM to 1 Quad / 8CM)
- Dispersion Case Quad, BPM Offsets and Structure, CM Pitch
- Wake Case Structure, CM offset, wakefields

Projected emittance growth is dominated by dispersive sources
Large quad spacing seems to be an attractive choice (?)

⇒ Constant phase advance of 60°; No Autophasing considered; G=30MV/m; 660
CM; Nominal misalignment; 18 DFS segments; 7 BPMs in launch region; 100 seeds

Length (m)		Length (m)		
	Mean dilution (nm)		90% dilution (nm)	
	1:1	DFS	1:1	DFS
1 Q / 1CM	2537	8.3	5252	15.3
1 Q / 2CM	470.9	6.9	940.1	13.1
1 Q / 3CM	170.7	11.0	367.3	21.2
1 Q / 4CM	120.8	20.2	232.5	39.4
NIKOLAY SOLYAK		ILC Workshop, Sno	wmass, 2005	

5

⇒ Effect of ADDING 3 extra BPMs and COR in 1Q/4CM b/w Quads 1-2; 2-3; 3-4

PAlmost no effect of adding extra BPMs / YCOR

⇒ To avoid the possible systematic effects

RF structure and CM Pitch : OFF

RF structure and CM Pitch : OFF Launch region BPM RMS OFFSET ~ 0

1 Q / 4CM is more sensitive to RF / CM pitches
Extra BPMs not improve final emittance

NIKOLAY SOLYAK

ILC Workshop, Snowmass, 2005

7

QUAD CONFIGURATIONS. Segmentation

⇒ Effect of varying No. of DFS segments for 1 Q / 4 CM ;
⇒ Nominal misalignment; 100 seeds

Effect of No. of quads per DFS segment

NIKOLAY SOLYAK

DFS:

1Q/2CM is equilibrium optics with equal contribution from each source. Optics with larger quad spacing is wakefield dominated with the systematic wake-related contribution (Sum of all three contributions is smaller that the total calculated emittance growth).

1 Quad / 4 CM		
1:1 Steering		
Nominal[nm]:	1.208e+002	
➡► No Wakes[nm]:	5.828e+001	
→ No Quad roll[nm]:	1.194e+002	
→ No Quad Offset[nm]:	1.204e+002	
No BPM Offset[nm]:	4.692e+001	
→ No Front BPM Offset[nm]:	1.118e+002	
No CM Offset[nm]:	8.799e+001	
→ No Cavity Offset[nm]:	1.212e+002	
→ No Cavity Pitch[nm]:	1.195e+002	
→ No CM pitch[nm]:	1.207e+002	
DFS		
Nominal[nm]:	1.177e+001	
No Wakes[nm]:	2.332e+000	
→ No Quad roll[nm]:	1.077e+001	
→ No Quad Offset[nm]:	1.113e+001	
No BPM Offset[nm]:	4.694e+001	
No Front BPM Offset[nm]:	8.904e+000	
No CM Offset[nm]:	9.314e+000	
→ No Cavity Offset[nm]:	1.153e+001	
No Cavity Pitch[nm]:	8.564e+000	
→ No CM pitch[nm]:	1.132e+001	

Screw

DFS

DFS

11.77

2.33

3.51

10.77

Nominal

No wake

No Disp

No Quad roll

EMITTANCE DILUTION – Effect of BPM Resolution

1 Quad / 2CM – 30 MV/m – No Autophasing

EMITTANCE DILUTION – Effect of BPM Resolution

Almost no effect for 1:1 steering
1Q/1CM is more sensitive
No bumps

NIKOLAY SOLYAK

Nick Walker Lattice: 1Quad / 2CM +Matching section+ 1Q/3CM (280 Quads)

Higher emittance growth at the first half-linac for the Nick Lattice id due to nonoptimal segmentation ? (18 segments in both cases)

QUAD CONFIGURATIONS. Energy spread

⇒ Initial Energy = 15 GeV (energy spread 130 MeV); Nominal misalignment; 100 seeds

	Mean dilution (nm) DFS		90% dilution (nm) DFS	
Injection energy	→ 5 GeV	15 GeV	5 GeV	15 GeV
1 Q / 1CM	8.3	5.6	15.3	9.1
1 Q / 2CM	6.9	4.7	13.1	9.3
1 Q / 3CM	11.0	6.5	21.2	13.6
1 Q / 4CM	20.2	10.2	39.4	19.3
NIKOLAY SOLYAK		LC Workshop, Snow	vmass, 2005	15

Emittance in Linac with new HG cavities (RE or LL)

NIKOLAY SOLYAK

- > $\Delta \gamma \varepsilon_v \approx 11$ nm
- Small effects of scaling law for longitudinal wake (WL vs. a)

Reduction of Quad and BPM offset installation tolerances from 300µm to 200µm has big effect to 1:1 steering and small effect on DFS

Effect of cavity and Quad misalignment

Tighter installation tolerances will reduce emittance growth Using wake bumps should help to reduce emittance growth

NIKOLAY SOLYAK

> Few Lattices with different quad configuration (1Q/1QM \rightarrow 1Q/6QM) were studied.

IQuad / 2 CM lattice seems to be optimal. Contribution of three sources: dispersion, wakefield and x-y coupling for this configuration is almost equal.

In higher quad spacing lattices the emittance dilution become wakefield dominated.

> Lattice with HG smaller aperture cavities (LL cavity Ri=30mm,

RE with Ri=33mm) probably will require tighter cavity/duad offset tolerances (~200um for LL cavity)

Scaling of NLC simulations to TESLA cavity

Solid lines-calculations, dashed-fit by formulas 0.20 ∫s₀/L $W_L/W_L(0)$ Wake If use normalized parameters: $a^* = \frac{a}{I}$; $g^* = \frac{g}{I}$; 0.8 0.15 0.6 $W_Z(s^*) = \frac{Z_0 c}{\pi \cdot a^{*2}} \cdot \exp\left(-\sqrt{\frac{s^*}{s_0^*}}\right) \cdot \frac{1}{L^2}$ 0.10 (c) 0.4 (d) 0.05 0.2 $W_{\perp}(s^{*}) = \frac{4Z_{0}c \cdot s_{1}^{*}}{\pi \cdot a^{*^{4}}} \cdot \left[1 - \left(1 + \sqrt{\frac{s^{*}}{s_{1}^{*}}}\right) \exp\left(-\sqrt{\frac{s^{*}}{s_{1}^{*}}}\right)\right] \cdot \frac{1}{L^{3}}$ 0.00 0.0 0.70. 0.05 0.10 Longitudinal wake: K.Bane.et all, SLAC-PUB-7862 Where: $s^*=s/L$ – normalized distance $s_0^* = (s_0 / L) = 0.41 \cdot (a^*)^{1.8} \cdot (g^*)^{1.4}$ a/L=0.69 0.08 $s_1^* = (s_1 / L) = 0.169 \cdot (a^*)^{1.79} \cdot (g^*)^{0.38}$ 7_0.06 0.04 Scaling Laws: 0.02 $W_{Z} \sim \frac{1}{L^{2}} W_{\perp} \sim \frac{1}{L^{3}}$ (a*,g* fixed) 0.00 0.6 0.8 0.9 0.00 07 0.05 0.10 0.15

 $W_Z \sim \frac{1}{a^x}$ $W_\perp \sim \frac{1}{a^3}$ (for fixed L)

Where $x = x(s/L) = 1 \div 2$, $x(s^*) \sim 2/(1 + 0.46 s^{*0.7})$.

Calculated for parameters in region: $034 \le a/L \le 0.69$ and $0.54 \le g/L \le 0.89$

Dipole wake: K.Bane, SLAC-PUB-9663

TESLA cavity: $a^* = 0.3$; $g^* \approx 0.8$ (a* out of range calculated NLC parameters, but...)

g/L

s/L

For transverse Wakefield good agreement between K.Bane and Zagorodnov/Weiland calculations. For Longitudinal wakes some disagreement. Igor formula gives: $W_Z(0) = 41.5 \left[\frac{V}{pC \cdot m} \right]$ Karl formula gives: $W_Z(0) = \frac{Z_0 c}{\pi \cdot a^2} = 29.4 \left[\frac{V}{pC \cdot m} \right]$