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e Look at three Static Alignment Algorithms in the
presence of the following:

— BPM Resolution and Beam Jitter

— Stray Fields

— BPM and Steering Magnet Failure

— Stronger Wakefields in Low Loss Cavities
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« Simulations performed in TAO using the BMAD
library

o Using TESLA TDR Main Linac lattice
— 23.4 MV/m gradient

— 1 quad per 2 cryos first half, 1 quad per 3 cryos second
half

 Beam Conditions
— 250 particles, Gaussian distributed
— 5.0 GeV Initial energy
— 3.0% initial energy spread, 0.3 mm bunch length
— Only looking at single bunch effects
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 Algorithms adapted from the following sources:

— Ballistic Alignment, or “BA”

e D. Schulte, N. Walker, “Simulations of the Static Tuning for
the TESLA Linear Collider”, PACO03 proceedings

— Quad Shunting, or “Kubo”

« Unpublished, Icdev.kek.jp/~kkubo/reports/MainLinac-
simulation/lcimu-20050325a.pdf

— Dispersion Free Steering, or DFS

e P. Tenenbaum, R. Brinkmann, V. Tsakanov, “Beam-Based
Alignment of the TESLA Main Linac”, EPACO02 proceedings
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In all the following analysis, unless otherwise specified, these standard
misalignments where used. The point of this analysis wasn’t to find alignment
tolerances but examine the effects of other issues in the presence of element
misalignments.

Error Tolerance With Respect To...
Quad Offset 300 m Cryostat
Quad Tilt 300 rad Cryostat
BPM Offset 300 m Cryostat
BPM Resolution 10 m True Orbit

RF Cavity Offset 300 m Cryostat

RF Cavity Pitch 200 rad Cryostat
Cryostat Offset 200 m Survey Line
Cryostatic Pitch 20 rad Survey Line
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BPM resolution was found to have a

BPM Resolution a
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An Earth-like dipole field was applied over all unshielded
components. The cavities were assumed to to be completely
shielded and all other components not shielded.

Since Earth’s field i1s known, compensation should be possible, but
this analysis will also give the effects of other unknown stray fields.

The Earth field was varied from 0 to its full strength of 54.3 micro-
Tesla.

Field Component Strength Unit
Earth’s field In Magnitude 54.3 microTesla
Ithaca, NY: Declination -12.2 Degrees West

Inclination 69.5 Degrees Down

Linac Orientation 90.0 Degrees East
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BBA with Earth Field
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BA Vertical Orblt w1th no Earth Field (mm)
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Here, the full 54.3 microTesla Earth-field is applied and shielding is
extended to fill the entire linac up to the point on the horizontal axis.
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BPM and Steering

This analysis assumed the failed BPMs or steering magnets have
been identified and “vetoed.”

The one-to-one alignment algorithms (BA and Kubo) are highly
sensitive to BPM and Steering magnet failure since the
corresponding dispersive quadrupole kick is not compensated at all.

Given an isolated failed BPM it may be possible to apply a steering
magnet kick and compensate the corresponding dispersive
quadrupole kick. Or, turn off the quadrupole and retune machine.
(feasibility of these hasn’t been tested yet)
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Kubo and BA very

sensitive to even a BBA with BPM failure
single failed BPM. 0 - . - . T —
DFS is very robust. BAS0% —t—

Kubo 90% & 1

DFS -t

DEFS

Final Vertical Emittance (nm)

]0 1 L 1 L 1
0 1 2 3 4 5 6 7 8

Percent BPM Failed

8/18/05 Jeffrey C. Smith 12



CORNELL __#¥%
UNIVERSITY _'lu'_‘ E P P

LABORATORY FOR ELEMENTARY-PARTICLE PHYSICS

Kubo is sensitive all
the way to the end of
Linac. This is due to
the beams having a
very large orbit after
correction.

Fianl Vertical Emittance (nm)
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Single failed BPM This failed BPM is ignored in the BA algorithm.
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This failed BPM is ignored in the Kubo algorithm.
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If, instead, we have
flaky BPMSs (with
100 micron
resolution) then BA
and Kubo behave
much better. Now,
DFS degrades in
performance since it
IS more sensitive to
BPM resolution.
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Slmllar I:eSUItS BBA with Steering Magnet failure
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* Current TTF cavities optimize E ., /E,.. = 2 which limit the
E... t0 ~43 MV/m

* Low Loss cavities optimize B, /E,.. = 3.61(mT/MV/m)
which limits E,.. to ~50 MV/m

— Allows for operation at higher gradients
— Allows for operation at lower cryogenic load, 20% less

— But, for us emittance police, Wakefields are larger
e K increases by 65%

* K increases by 18%

 Full studies of the functional form of the wakefields appearently have not
been undertaken, so, this analysis just scaled the TTF wakes by 65% and
18%.
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Here, each RF CaVIty Alignment Sensitivity to Vertical Cavity Offset
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The effects on BBA

IS not as simple as BBA with standard misalignments and different strength Wakefields
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BBRA versus Cavity Vertical Alipnment with Low Loss Cavity 'Wakefields
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All three alignment
algorithms result in a
beam orbit on the
order of a millimeter
or greater, so aligning
the RF cavities to
greater than a
millimeter will do
little to reduce the
wakefield effects.
Considering the very
good performance of
BA, it appears that
having the beam travel
In a straight line also
mitigates the effects of
wakefields.
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Varying the strength
of the BNS Damping BBA with standard misalignments and Low Loss Cavities
also doesn’t seem to o | BA ——
compensate for the | e |
stronger wakefields. & ;
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random effects of 2
misaligned structures. = 30 | -
+ + -+
20 J ' :
none TIF L

Strength of BNS Damping

8/18/05 Jeffrey C. Smith 23



CORNELL __#¥%
UNIVERSITY Wpe u ' ' l ' ' lar
LABORATORY FOR ELEMENTARY-PARTICLE PHYSICE

Increasing BPM resolution from 10 microns to 1 microns has little
Improvement in performance (of static alignment algorithms)

Beam jitter was found to have little effect (on static alignment
algorithms) up to about 1 jitter

Stray Fields have a significant effect on all three algorithms but
extending shielding through the first 1500 meters of linac will remove
effects (for the TESLA TDR lattice).

o Essentially, a single failed BPM can be detrimental to Kubo and BA.
DFS is robust to failed BPMs. However, the opposite Is true for noisy
BPMs.

e The greater Wakfields of the Low Loss Cavities cannot be mitigated
with tighter tolerances of the RF Cavities. Emittance preservation is
tied to quadrupole and BPM alignment.

8/18/05 Jeffrey C. Smith 24



CORNELL _ 4l PP
UNIVERSITY W@ L E

LABORATORY FOR ELEMENTARY-PARTICLE PHYSICS

Thank You

Special Thanks to:
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