CERN Contribution to Main Linac Studies

D. Schulte A. Latina P. Eliasson

• Main linac studies are based on TESLA TRC lattice

 \Rightarrow will be updated when we agree on new lattice

Emittance as Performance Measure

- Banana effect could make emittance as measure for linac performance questionable
- Luminosity can be optimised by scanning offset and angle
- Certainly more complicated than feedback with BPM
- \Rightarrow Emittance seems good measure for static case
- \Rightarrow For dynamic integrated simulation is required

Misalignment Model

- TRC model
 - $\sigma_{quad} = 300 \,\mu\mathrm{m}$
 - $\sigma_{cav} = 300 \,\mu\mathrm{m}$
 - $\sigma_{cav}^\prime = 200\,\mu\mathrm{radian}$
 - $\sigma_{bpm} = 200 \,\mu\mathrm{m}$
 - $\sigma_{res} = 10 \,\mu\mathrm{m}$
 - $\sigma_{module} = 200 \,\mu\mathrm{m}$
- LICAS based model
 - is implemented
 - needs further discussion

• Need consistent model \Rightarrow WG2

Simulation Tools

- All simulations are performed with PLACET
- Two different options exist
 - efficient tracking and correction of static machine
 - \Rightarrow only dynamic error is beam jitter
 - full seperation of tracking and correction
 - \Rightarrow quite realistic modelling including all noise sources
 - \Rightarrow much slower than the other solution
 - \Rightarrow will be used more when full lattice design exists
- Efficient pseudo multi-particle tracking is in preparation
 - \Rightarrow no loss of information from bunch compressor to beam delivery system

Steering Methods

- One-to-one
 - does not meet the required performance
- Ballistic alignment
 - sensitive to remanent fields
- Quadrupole shunting method
- Dispersion free steering
 - can be implemented via changes of quadrupole strengths
 - or modification of beam energy
 - beam energy can potentially be modified within a pulse \Rightarrow potentially removes most of pulse-to-pulse jitter effects
- Tuning bumps directly modify emittance or luminosity

Ballistic Alignment

- Beam line is devided into sectors in each of which
 - quadrupoles are switched off
 - beam steered into last BPM (could use mean of all BPMs)
 - BPMs are aligned to beam
 - quadrupoles are switched on and one-to-one correction is performed
- Resulting emittance growth is about $10\,\mathrm{nm}$ for $\sigma_{res}=5\,\mu\mathrm{m}$
- External fields matter
 - could be dealt with by using different energy beams
 - using more than one BPM to define ballistic line will help
- Requires switching of quadrupoles \Rightarrow slow since low repetition frequency

Quadrupole Shunting Method

- Align BPM to quadrupole
- Perform optimisation of beam trajectory
- Preliminary simulations show $\Delta \epsilon_y \approx 15 \,\mathrm{nm}$

Dispersion Free Steering

$$\chi^2 = w_1 \sum_{i=1}^n b_{0,i}^2 + \sum_{j=1}^m \sum (b_{j,i} - b_{0,i})^2 + w_2 \sum_{i=1}^n d_i^2$$

 $b_{j,i}$: Offset of beam j in BPM i (i = 0 nominal beam) d_i strength of corrector i

- Three different beams are used
 - with 20% less than nominal energy
 - with 10% less than nominal energy
 - nominal beam
- The difference between each of the first two beams and the nominal is minimised together with the offset of the nominal beam
- Varying the gradient is easy, varying the initial energy is not easy

Correction with Different Gradients

• Only different gradients are used

 \Rightarrow can be easily implemented in reality

 \Rightarrow can potentially be done in single pulse

- Full TRC misalignment model
- BPM resolutions $\sigma_{res} = 10, 5, 2, 1 \, \mu m$ simulated
- Beam position and angle are fit at start of each bin
- ullet Weights w_1 and w_2 for orbit and corrector strengths are scaned
 - assumed constant value along the linac, could be optimised

Results

 $\Rightarrow \text{Target of less than} \\ 20 \text{ nm cannot be} \\ \text{reached even for average} \end{cases}$

160 -----

 W_2

Better BPM Resolution

- The BPM resolution acts on beam
 - incorrect reconstruction of beam position locally
 - wrong reconstruction of incoming beam offset and angle
- Reconstruction of incoming beam is only necessary if jitter is too large
- One can assume that the error of reconstructing incoming beam is the same as BPM resolution
- Best w_1 , w_2 for each case

 \Rightarrow The impact of the BPM resolution is not very large

Origin of Emittance Growth

- Best w_1 , w_2
- ⇒ Need to improve alignment of first part of main linac
 - Initial energy difference
 - but it needs to be define how to do that,
 e.g. switch off some cavities
 - Vary w_1 , w_2 along linac

Using Initial Energy Difference

- need to figure out how to do it
- Optimum weights used according to individual scans
- BPM resolution $\sigma_{res} = 10 \,\mu\text{m}$ (upper) and $\sigma_{res} = 1 \,\mu\text{m}$ (lower table)
- \Rightarrow Initial energy difference helps, but
- \Rightarrow Even with precise BPMs barely sufficient
- \Rightarrow energy difference below 10% is of little help for $\sigma_{res} = 10 \, \mu {\rm m}$

$\Delta G_1/G_0$	-0.2	-0.2	-0.2	-0.2
$\Delta G_2/G_0$	0.0	0.0	0.0	-0.1
$\Delta E_1/E_0$	0.0	0.0	0.0	0.0
$\Delta E_2/E_0$	-0.2	-0.1	-0.05	0.0
$\left< \Delta \epsilon_y \right> [\text{nm}]$	12	15	24	28
$\hat{\Delta \epsilon_y}(90\%) [\mathrm{nm}]$	53	52	69	190
$\Delta G_1/G_0$	-0.2	-0.2	-0.2	-0.2
$\Delta G_2/G_0$	0.0	0.0	0.0	-0.1
$\Delta E_1/E_0$	0.0	0.0	0.0	0.0
$\Delta E_2/E_0$	-0.2	-0.1	-0.05	0.0
$\left< \Delta \epsilon_y \right> [\text{nm}]$	7	8	14	26
$\hat{\Delta \epsilon_u}(90\%)$ [nm]	24	28	30	120

Emittance Growth

- Case with 20% gradient difference and 10% energy difference is shown
- Relative importance of imperfections very different from case with gradient variation only
- Beam jitter most important via BPM resolution)

Improvement with Dispersion Bumps

- Simulations performed by Peder Eliasson
- Simple bump model: just add dispersion
- One bump before, one after the linac

 \Rightarrow four degrees of freedom

- ⇒ Dispersion free steering with gradient differences only is not sufficient
- \Rightarrow Emittance growth is acceptable after bump tuning

Results for LICAS (Preliminary)

- LICAS model provided by Grzegorz Grzelak, Armin Reichold
 ⇒ interfaced to PLACET
- Only random walk included
- No errors like stakeout etc
- No correction for final point position/reference direction change
- No tuning bumps
- \Rightarrow Deserves more detailed investigation

Wavelength Dependence

 $\Delta\epsilon_y/A^2$ [nm/µm²]

Conclusion

- Using dispersion free steering with different gradients seems not to give satisfactory results
- Adding dispersion tuning bumps seems to solve the problem
- Improvements are possible and need to be studied
- More studies once we converge on a lattice
- LICAS needs to have a close look
- Study of correction with full seperation of tracking and correction started
- Comparison of different alignment methods