

2005 International Linear Collider Physics and Detector Workshop and Second ILC Accelerator Workshop Snowmass, Colorado, August 14-27, 2005

Cryomodule Design: Reference Configuration

Carlo Pagani

INFN Milano and DESY

On leave from University of Milano

Consensus on TTF Type III

Three cryomodule generations to:

improve simplicity and performance

minimize cost

Sliding Fixtures @ 2 K

"Finger Welded" Shields

Required plug power for static losses ~ 5-7 kW/(12 m module)

Large Operation Experience in TTF

	Туре	I nstallation date	Cold time [months]
CryoCap		Oct 96	50
M1	1	Mar 97	5
M1 rep.	2	Jan 98	12
M2	2	Sep 98	44
M3	2	Jun 99	35
M1* MSS	2 2	Jun 02	30 8
M3*	2		19
M4	3	Apr 03	19
M5	3		19
M2*	2	Feb 04	16
15 Augus	st 200!	5	

Type III Cryomodule Main Features

- Very low static losses: dominated by warm to cold penetrations
- Very simple and effective thermal shields
- Moderate cost for production and assembly
- Relaxed tolerances for most of the components
- Main tolerances set to minimize internal forces while allowing a simple and effective alignment procedure at warm
- Warm to cold alignment maintained in within ± 300 μm
- Maximum filling factor, i.e. maximum real estate gradient. Filling factor determined by module independent items to be improved:
 - Cavity and quadrupole interconnections
 - Quadrupole/BPM package and beam line HOMs
 - Vacuum valves and pumps at the module interconnection, i.e. module length
 - Required cryogenic boxes to feed and extract He
 - Vacuum barriers
- Very few cold to warm transitions: both MTBF and MTTR affected

From Type III to ILC

- Take TTF Type III as reference conceptual design
- Introduce layout modifications required to fit ILC requirements:
 - Quadrupole/BPM package at the center (symmetry and stability)
 - Review pipe sizes/positions according to gradient and cryo-distribution
 - Consider/include movers (warm) at the center post for x,y quadrupole beam based alignment
 - Consider/include movers to optimize the module centering according to HOM data
 - Review suspension system (post, etc.) for stability and transport
- Review all the subcomponent design for production cost and MTBF
 - Materials, welds, subcomponent engineering, LMI blankets, feedthrough, diagnostics and cables, etc.
 - Module assembly issues
- Reduce the waste space between cavities for real estate gradient
 - Flange interconnection, tuners, etc.
- Define all the QC and QA steps required to assure MTBF

Concluding remarks

- The cryomodule design, performance and cost are central for the LC based on the cold technology
- Detail design must be driven by the active element requirements and the overall ILC optimization
- Interregional collaboration is crucial
- XFEL, SMTF and STF should move as much as possible in a parallel and synergic way