

Cryomodule Plans at KEK

KEK

Norihito Ohuchi and Kiyosumi Tsuchiya

1) Target of the cryostat R&D in KEK

- Gaining the experience of the long cryostat for the S.C. cavity.
- R&D of a high performance and low cost ILC cryostat.
- Cooling two types of the cavities of 35 MV/m and 45 MV/m down to 2 K in STF, and performing high power and beam tests.

2) Strategy of the cryostat R&D

- Starting point of the STF cryostat design: TESLA design
- R&D and study items for the STF cryostat
 - Understanding the TESLA design from the cryogenic hydrodynamic point of view.
 - Heat transfer of the superfluid helium, pressure drop, and temperature distribution in the system.
 - R&D component
 - SUS-Ti joint between the helium vessel and cryogenic lines.
 - Magnetic shield
 - Measurement of the remanent field in the shield and the magnetic characteristics of the shield material.
 - Low cost vacuum system for the STF cryostat
 - Survey of the low cost quadrupole magnet system

3) Status of the cryostat R&D in KEK

- FY2005
 - Finalizing the conceptual design of the cryostat for the STF in KEK.
 - The design of the overall assembly has been completed.
 - Making a contract with a company for the construction of the cryostat.
 - The company will be decided at the 24th of August.
- FY2006
 - Design and construction of the tools for assembling the cavities into the cryostat.

4) Technical issues in the STF phase-1 cryostat

- Connection of pipes
 - Appling automatic welding as much as possible.
- Material of the cryostat components

—	Vacuum vessel	Carbon Steel
_	Pipes for cryogenics	SUS304L or 316L (Ti for the 35 MV/m cavity)
_	Thermal radiation shield	Al 1050
_	Vacuum seal at room temp.	O-ring
_	MLI (super-insulation)	Polyester film
-		- 0

• Tuning resolution of cavity alignment < 50 m

3

STF cryostat

- Total weight of cryostat = around 5.6 ton.
- The lengths of the vacuum vessels for 35MV/m cavities and 45 MV/m cavities are 5545 mm and 5907 mm, respectively .
- The lengths of the 2K Gas return pipes for two cryostats are identical, 5830 mm.
- The most up-stream cavity-jacket is fixed for each cryostat by the support near the fixed bracket for each cryostat, and the other supports are free in the axial direction.
- The position of the jacket with respect to the input coupler is kept at almost constant with a Invar rod during cool-down.

Cooling circuits

- Outer diameter of the vacuum vessel is same as the diameter of the TESLA cryostat.
- Support system of the cavity is slightly different from the TESLA system.
- The distance between the vacuum vessel and the input coupler is around 10 mm.
- The thermal radiation shields have the cooling pipes in the left and right symmetry.

- Support system of the cavity is same as the TESLA system.
- The distance between the vacuum vessel and the input coupler is around 10 mm.

Thermal contraction

Cooling pipe (SUS: L/L=-0.265%)

	Pipe end @valve box	GHe pipe end @up-stream	Fixed support bracket	Sliding support bracket	GHe pipe end @down-stream
Position (mm)	2571	1376	0	-3153	-4454
L (mm)	-6.8	-3.7	0	-8.4	-11.8

Thermal radiation shield (A1: L/L= -0.33% @80K, L/L= -0.368% @5K)

	Shield end	Fixed support bracket	Sliding support bracket	Shield end
Position (mm)	1858	0	-3153	-4454
L for 80 K shield (mm)	-6.1	0	-10.4	-14.7
L for 5 K shield (mm)	-6.8	0	-11.6	-16.4

Components

	Support post	Cavity (Nb)	Ti jacket	SUS jacket	Invar rod
	300-4K	300-4K	300-4K	300-4K	300-20K
	L/L=-0.338%	L/L=-0.129%	L/L=-0.134%	L/L=-0.265%	L/L=-0.034%
L (mm)	140 (in vertical)	1260	1260	1260	5000
L (mm)	-0.47	-1.63	-1.69	-3.34	-1.7

Cryostat pipe size

	STF-phase1	TESLA	Material
Vacuum vessel	965.2, t 12	965.2, t 9.52	carbon steel
2 K He Gas return	318.5, t 6.5	312, t6	SUS
2 K two-phase supply	76.3 , t 2.1	76 , t 2.0	Ti or SUS
		(60, t1.5)	
Cool down/warm up	27.2 , t 1.65	42.2 , t 1.65	SUS
5 K shield supply	30, t4	60.3 , t 2.76	SUS
5 K shield return	30, t4	60.0 , t 5	SUS
80 K shield supply	30, t4	60.3 , t 2.76	SUS
80 K shield return	30, t4	60 , t 5	SUS

Construction schedule of the STF cryostat

Hydrodynamic study

ILC model (Pressure and temperature profile along the GRP of 300)

- Pressure drop along the 2.5 km GRP = 25 Pa for 10 W, 158 Pa for 30W
- Temperature difference along the 2.5 km GRP = 3 mK for 10 W, 17 mK for 30W

- Pressure drop along the system = 2.27 Pa for 10 W, 17.59 Pa for 30W
- Temperature at each cavity = 2.000 K for 10/8 W, 2.002 K for 30/8 W

Temperature profile in the helium jacket

(calculation of temperature profile in LHe to confirm the maximum temperature less than Lambda temperature)

Calculation model

- Pipe diameter between LHe supply line and cavity jacket = 60 mm
- Cavity jacket length = 1000 mm
- Distance between cavity heating surface and jacket inner surface = 6 mm
- Heat load = 30.0 / 4 W

Temperature profile after 4.6 seconds

• The diameter of 60 mm for the pipe between the LHe supply line and the cavity jacket is enough to keep the LHe temperature below the Lambda temperature.

SUS-Ti joint R&D

- Joining by HIP (Hot Isostatic Pressing)
 - Important concern : diffusion of Fe, Cr and Ni into Ti

--> degradation of strength at low temperature

- Manufacturing samples with the insert materials
 - ➤ V on the surface of Ti and Cu on the SUS
 - > The following tests will be performed in this year.
 - □ Tensile tests at room temperature and liquid nitrogen temperature.
 - □ Charpy V-notch impact tests at room temperature and liquid nitrogen temperature.
 - □ Helium leak tests at 2 K.
- Friction pressure welding
 - Diffusion rates of Fe, Cr and Ni into Ti are less than the rates by HIP.
 - \succ Need to measure the strength of the joint.
 - The manufacturing method of the samples is under investigation.

Magnetic shield

- Remanent field in the vacuum vessel
 - Survey of the measuring system for weak magnetic field
 - Calculation of the distribution of remanent magnetic field in the cryostat
 - Study of the magnetization in the manufacturing process of the cryostat
- Measurement of the magnetic characteristics of the shield material
 - Temperature dependence
 - Effect of machining process
 - Effect of heating process

Cryogenic sensors and heat load measurement

- Cryogenic sensors
 - Selection of cryogenic temperature sensors; Cernox, CGR and TVO
 - Liquid helium sensor; behavior of the sensor around the Lambda point
- Heat load measurement of the cryomodule
 - Measurement of the heat load from each component in the module
 - Separation between the static and dynamic heat loads

Quadrupole magnet

• TESLA design

- The magnet is cooled by super-fluid helium in the jacket.
- Ceramic insulators are required for the current leads.
 - ➢ In case of applying the HTC current leads, the insulators are installed on the metal jacket.
- Magnet assembly in the cryostat is complicated
- Study of the alternative magnet system
 - The possibility of the magnet system cooled by conduction
 - Optimization of the operation temperature
 - Simulation of the cool-down process after magnet quench (cool-down time)
 - ➢ System configuration

<u>Summary</u>

- The design of the cryomodule for the STF phase-1 is based on the TESLA design.
- This cryomodule will have been manufactured in 2006, and in October of 2006, we will start various tests of the cryostat and the RF system in the STF.
- R&D items for the cryomodule
 - Study of thermal and hydrodynamic behavior of the R&D cryostat
 - SUS-Ti junction
 - Magnetic shield
 - Vacuum system
 - Survey of the quadrupole magnet system cooled by thermal conduction