XFEL Module

Lutz.Lilje@desy.de DESY -MPY-Snowmass 2005 17.8.2005

Overview

- Summarize the technical changes which are going to be implemented for the next cryomodules:
 - Length
 - Layout

. . .

- Magnet, BPM, HOM package

Layout for shield cooling

- The main dynamic load are the input couplers.
 - In the existing pipe layout (50 mm inner diameter) their load would result in a high pressure drop on the 40/80K cooling line.
 - Therefore it is desirable to increase the inner diameter of the tubes to DN 65 (71 mm).
 - This will be also done for the 4/8K shield tubing.

Module Length TTF-Type 3 and XFEL Modules

- Lamda: 230,6 mm
 - module length: n x lambda/2
 - n x module length within a few millimeters (linac installation!!)
- TTF type 3 12 200 mm, but 53 x lambda = 12 221,8 mm → TTF type 3 is to short by 21,8 mm
- XFEL type Goal: Shorten module length by 230,6 mm
 depends on space needed for magnet, BPM and HOM-absorber (detailed design underway)

Module length

- Module length fixed to
 - $L_{XFEL module} = 52 \lambda = 11991.2 \text{ mm}$
 - L = n/2 λ
 - $\lambda = 0.2306 \text{ m}$ (= 299792458 /130000000)
 - Length reduced by about one wavelength as compared to TTF
- Magnet package
 - 300 mm
 - Comment:
 - this needs confirmation with field calculations
 - Crosscheck saturation (steering coils)
- BPM
 - 170 mm
- HOM absorber
 - 216 mm
 - Detailed thermal calculations for potential cw operation to be presented
- Reserve is about 70 mm
 - Might be used partially for modifications of the magnet package
- Drawing available

07.12.2005

07.12.2005

Differences for Magnet / BPM longitudinal movement

- Because:
 - XFEL magnet will be cooled at 2K (like the cavities)
 - XFEL magnet vessel will be made of Titanium
 - And most important:
 - XFEL magnet/BPM will be supported like cavities!!!
 - This means, longitudinal movement will be reduced drastically.
- Rough comparison for longitudinal movements at the end of the of beam line in direction module center:
 - TTF type 3 ~17 mm
 - XFEL type ~ 4 mm
- →Impact for beam line bellows...

Helium GRP/Posts

logitudinal movement posts during cool down module type TTF III -->sliding ←sliding fixed 0.3 A E 0.3 A B // 1 D Beam direction Fixpoint Invar rod C1 C2 C3 C4 C5 C6 C7 C8 **BPM/Mag** HOM-Abs

10

Helium GRP/Posts

Iongitudinal movement posts during cool down module type TTF III plus (XFEL)

HOM-Absorber

Between Modules

11

Cavity supports principle

• Four C-shaped stainless steel elements clamp a titanium pad welded to the helium tank.

- Rolling needles reduce drastically the longitudinal friction
- Cavities are independent from the elongation and contraction of the HeGRP.
 - Lateral and vertical position are defined by reference screws
 - Longitudinal position can be fixed by the use of an Invar rod

07.12.2005

Cavity supports pictures

07.12.2005

Koppler 2K/300K

290 K

Lutz Lilje

XFEL magnet

- About a factor of 2 shorter than TTF design
- Operation at 2K
- Titanium vessel
- The magnet should have a cavity-like support.
- Current leads under discussion
- The field calculations for remnant fields and the magnetic field at the neighbouring cavity are not finished yet.
- For the injector, it might be desirable to put the magnets in a separated cryostat (similar to a string connection box) as the magnetic lattice differs from the one in the main linac.

XFEL Magnet Work is being done by CIEMAT

- Field calculations are still underway
 - Check fields
 outside the
 magnet
 - Reemant fields
 from steerer coils

Lutz Lilje

Integrated Dipole Field (normalized), Quadrupole on various settings

- At high IQ saturation effects from the iron yoke
 - about 15% saturation as calculated
- At low IQ persistent current or remanence effects
 - about ±4%
- Some variation due to the powering of the dipoles
 - about 2% between 0A and 100A

Vibration measurements

- Accelerometers
- Geophones / Seismic sensors
- Results
 - Experimental setups working
 - Cultural noise can be identified
 - Pumpstands for isolation vacuum identified as a noise source
 - Decoupling of mechanical vibrations tested and achieved
 - Amplitude on quadrupole 2-3 times higher than on the ground
 - Seismic sensors show larger amplitudes
- Experiments need to be continued on TTF
- Module test stand or TTF
 - Excite mechanical modes with an external vibration source

Pump stand without/with modifications Horizontal Sensors (2 different days)

RMS average, midnight ± 1 hour

Sensors: Cold Top Socket

Different days Mon "without" Tue "with" Horizontal vibrations much larger Cold Signal *3 Some reduction below 25 Hz Large reduction between 25 and 50 Hz 12

XFEL Module Meeting DESY, Sep. 2, 2004

H. Brueck, DESY MKS

Safety issues, AfA/TÜV

- Discussions with Authorities is going on
 - 'Druckbehälterklassifizierung der XFEL-Cryomodule'
 - No problems expected
 - But:
 - Niobium is not a qualified material for cold temperature (mechanical properties)
 - This can be mitigated by arguing that the Ti-Vessel and the Cryostat are the safety containers
 - Introduction for the TÜV to propose a procedure for approval for
 - CrNi-welding 2K
 - Ti-Vessel weldings
 -

Industrial Studies on Module Assembly

- Prepare a study by industry on the cryomodule assembly
 - Involve industry early
 - Profit of industrial experience
- Results of the study will be published
- Specification of XFEL-Cryomodule Design&Assembly for Industrial Studies

Module Test Stand

- Allows cryogenic tests and RF measurements independent from the LINAC
 - No beam tests
 - Dark current measurements will be integrated

Summary: Ongoing Work

- Full 3D-Model of type III cryostat under preparation
- Order for 2 new cryostats soon
 - Close to TTF
 - Not shortened by 1 lambda
 - New magnet, HOM, BPM
 - Still compatible with TTF
 - Close collaboration with INFN, ZANON
- Prepare to install into TTF in Summer 2006
 - Module 6 and 7 (replace M3*)
 - 3rd harmonic
 - Repair ACC5 (tuner motors)
- Module assembly studies with industry
- Build module test stand

