Overview of RF Distribution System and Cost Drivers

For Snowmass 2005 WG 2

Brian Rusnak
Lawrence Livermore National Laboratory

The RF System is a Dominant Cost Driver - As Indicated in the TTF Technical Design Report

10.2.2 Main linac RF system

The RF system (chapter 3.4) is the second largest cost item with 587 million EUR. Th. most relevant parts with respect to cost are klystrons; modulare and pulse transformers; wave guide distribution system; interlock and controls; low level RF system; HV cables. The cost estimates are based either on industrial studies or established costing procedures.

Klystron

The cost estimate is based on the production of the total number of klystrons by one manufacturer. A mass production study was made by the present prototype manufacturer (Thomson Tubes Electroniques, Velizy, France).

Prices for auxiliary power supplies (solenoid, filament, core bias, vacuum pump, electronics racks) were scaled from TTF costs using a standard industrial mass production costing rule, which states that a price reduction of 5% is achieved for each factor of two in production number (95% learning curve). The cost estimate for the racks is based on an estimate by a manufacturer.

Cost Breakdown by Subsystem

from Barish, Monday's GDE talk...

Depending on your favorite number for the total estimated cost of the ILC, this percentage gives a target value

So, Why Is It Expensive - It's Complex!

Waveguide type
Dimensions, mm
Material
Flange type
Max pulse power (theonetical for $30 \mathrm{kV} / \mathrm{mm}$)
Max pulse power (eqerience)
Losses at 1.3 GHz (experience)
Max waveguide losses (for $57 \mathrm{~kW}_{\mathrm{mc}} 10 \mathrm{~Hz}$)
Waveguide temperature (for $57 \mathrm{~kW} \mathrm{~W}_{\mathrm{m}}$)
Max thermal waveguide expansion
Max phase-shift
(over waveguide branch due to incressing waveguide width)
Total RF power ${ }_{\text {ave }}$ for TESLA
Total waveguide losses ${ }_{\text {ave }}$
Total circulator losses ${ }_{\text {ave }}$
Total length of waveguide system
Total length of circulator structure

WR650
165.1×82.55
A1
PDR14
58 MW
$>5 \mathrm{MW}$
$0.22 \% / \mathrm{m}$
$125 \mathrm{~W} / \mathrm{m}$
$40^{\circ} \mathrm{C}+\mathrm{T}_{\text {ambient }}$ $0.9 \mathrm{~mm} / \mathrm{m}$
12°

36 MW
1.4 MW
0.7 MW

85 km
10 km

V.Katalev, A.Eislage, E.Seesselberg

One Klystron is Split and Drives Between 16 and 32 Cavities Depending on Klystron Power

Figure 3.3.5: RF waveguide distribution of one RF station.

With All the Splitting and Distributing, a Whole Lot of RF Hardware is Needed

V.Katalev, A.Eislage, E.Seesselberg

To Try and Better Understand the Cost Drivers in the RF Distribution System, an Assessment was Done

- Some costs were obtained from the TESLA Technical Design Report, others from the FNAL assessment of the TDR (which were similar)
- Some costs were obtained from discussions with experts (though different people often had quite different experiences)
- Other costs were determined by project estimating the task of building the pieces of hardware, then adjusting numbers around for interconsistency
- In general, the approach was to assume that more complex pieces of hardware would be more costly that simple pieces.
- complex: couplers, circulators, loads, hybrids, 3 stub tuners
- simpler: straights, H bends, flex guides (?), directional couplers
- Overall, at this stage, the exact estimated numbers are not as crucial as the areas they identify as major cost drivers for the overall system

To Give Some Idea of Numbers...

1.1.2 Main Linac RF System 587
1.1.2.1 RF Power Distribution \& LLRF
1.1.2.1.1 RF Power Distribution 572RF power circulatorsRF power hybrid couplersRF wave guidesRF transformersRF bellowsRF signal couplers
1.1.2.1.2 Low Level RF Control 572LLC digital feedbackLLC monitoringLLC RF componentsLLC miscellaneousLLC master oscillator \& distribution
1.1.2.1.3 (blank)
1.1.2.2 Klystrons \& Interlocks
1.1.2.2.1 Klystron, solenoid \& socket 572
1.1.2.2.2 Klystron interlocks 572
1.1.2.2.3 Klys, aux. PS Fil, Sol, Bias, Vac 572
1.1.2.2.4 (blank)153

Approximate Present TTF RF System Costs

An Assessment of Some Relative Costs sans Klystron and Modulator

The assessment was done using a cost estimating exercise to determine what the relative costs of components were based on an independent evaluation of materials and effort to build components

An Estimate of Some Costs Includes Klystron and Modulator

WR 650 waveguide	
SRF cavities	24064
cavities/cryomodule	8
cavities/klystron	32
klystron peak power (MW)	10
cryomodules	3008
THIS IS FOR THE ENTIRE ILC SYSTEM	
	numbers
klystrons	752
modulators	752
couplers	24064
3 stub tuners	24064
circulators	
circulator loads (water)	24064
directional couplers	24064
flexible guide sections	24064
H-plane bends	24064
line hybrids	48128
line hybrid loads (air)	24064
intra-cryomodule straights	24064
drive hybrids	24064
drive hybrid loads (air)	1504
coupler HV bias supplies	1504

yikes! (recall the

12\% number...)

As this was a first attempt, I assume I was being too conservative in my costing. I attempted to "shoot low" to hit closer to what I thought a good 12\% number might be...

A Further Estimate of Some Costs -
 Includes Klystron and Modulator

Thoughts on Assessments and RF Distribution Costs So Far

- Costs on the ILC RF distribution system will be driven up by two main factors:
- Very big costs on smaller numbers of items, e.g., modulators - $\$ 645,000 \times 752$
- Very big number of moderately expensive items, e.g., couplers - $24,000 \times \$ 10,000$
- For some perspective, in the analysis, ILC will need $\sim \underline{250,000}$ RF plumbing parts! At an average of $\$ 1000$ each, that's $\$ 250,000,000$.
- This assessment is an attempt to start to look at high dollar items to help prioritize cost reduction efforts
- This also gives suggests (to me) that we had better realize some significant cost reductions due to quantity to meet some of the present cost estimates out there

