LET Requirements on RF Stability

WG1-WG2 Joint Session on RF Stability

What LET Issues Drive RF Stability?

- Mainly bunch compressor
 - Most designs use 1.3 GHz RF (TTC) at 30 to 35 MV/m
 - Phase and amplitude errors can drive
 - Energy / energy spread errors at IP (not too serious)
 - Arrival time / bunch length errors at IP (much more serious)

BC RF

- Bunch compressor may be single stage or two stage. Examples:
 - Single stage: 48 cavities
 - Two stage:
 - 32 cavities in stage 1
 - 432 cavities in stage 2
 - 4 possible configurations depending on final bunch length etc
- Luminosity tolerances are estimated to be:
 - 5% variation in bunch length
 - Arrival time jitter = 20% of β_y^*

Bunch length variation tolerance may be excessively tight, but in any event it is arrival time jitter tolerance that drives all RF specifications

Tolerances on Mean Phase and Amplitude of BC RF System

Blue = BC1 drives tolerance, Red = BC2 drives tolerance, Purple = both systems about equal

Parameter	1 Stage	300 "A"	300 "B"	150 "A"	150 "B"
BC RF Amplitude	0.2%	0.1%	0.15%	0.08%	0.1%
BC RF Phase	0.07°	0.05°	0.12°	0.03°	0.06°

Klystron Tolerances

- Single-stage BC has few klystrons (maybe 4)
 - Klystron tolerance ~ 2 * system tolerance
- Two-stage BC has ~20 klystrons in BC2
 - BC2 drives tolerances
 - klystron tolerances can be ~ 4.5 * system tolerance
- In any event, need to reserve some fraction of budget for systematic phase and amplitude errors, some fraction for uncorrelated klystron jitter