
Higher Loops: Summary and Prospects

Impression and observations

George Sterman, Stony Brook

My perspective in the light of work with

Nikolaos Kidonakis Carola F. Berger, Tibor Kucs

Maria-Elena Tejeda-Yeomans & S. Mert Aybat

• Why so many loops?

• How we get away with perturbation theory in QCD

• Themes of this Loopfest

• What resummation says about singularities

• Concluding comments

No figures: please imagine loops as necessary



• Why so many loops?

– Coupling to the decoupled

All New Physics is embedded in Standard Model observables

but only through values of observable parameters: MW , αs,

etc. Effect of massive (Mnew ≫ Eext) states is local

– Discovering the quantum mechanical stories

But final states are generally indistinguishable

from standard model processes event by event.

At high enough energies (Eext ≥ Mnew)

these effects become nonlocal; producing deviations

from Standard Model predictions

But only by precision in rates & distributions of

Standard Model and New Physics signals can the

nonlocality be quantified and New Physics discovered.



• How we get away with perturbative QCD

• The problem for perturbation theory

1. Confinement

∫

e−iq·x〈0|T [φa(x) . . . ] |0〉

has no q2 = m2 pole for φa that

transforms nontrivially under color (confinement)

2. The pole at p2 = m2
π

∫

e−iq·x〈0|T [π(x) . . . ] |0〉

is not accessible to perturbation theory (χSB etc., etc.)



• And yet we use infrared safety & asymptotic freedom:

Q2 σ̂SD(Q2, µ2, αs(µ)) =
∑

n

cn(Q2/µ2) αs
n(µ) + O (1/Qp)

=
∑

n

cn(1) αs
n(Q) + O (1/Qp)

• What are we really calculating? PT for color singlet operators

–
∫

e−iq·x〈0|T [J(x)J(0) . . . ] |0〉 for color singlet currents

e+e− total, sum rules etc. “no scale” (Dixon)



– Another class of color singlet matrix elements:

lim
R→∞

∫

dx0

∫

dn̂ f(n̂) e−iq·y〈0|J(0)T [n̂iΘ0i(x0, Rn̂)J(y)] |0〉

With Θ0i the energy momentum tensor

– These are what we really calculate

“Weight” f(n̂) introduces no new dimensional scale

Short-distance dominated if all dkf/dn̂k bounded

Individual final states have IR divergences, but these cancel

in sum over collinear splitting/merging and

soft parton emission because they respect energy flow



We regularize these divergences dimensionally (typically)

and “pretend” to calculate the long-distance enhancements

only to cancel them in infrared safe quantities

It is this intermediate step that makes the calcualtions

tough, and is part [not all] of why higher-order calculations

are hard!

The goals of experiment are remarkably similar – to control

late stage interactions in calorimeters. J. Repond



– Jet, event shape, energy flow observables

(Tkachov 95, Korchemsky, Oderda, GS 96)

– Light quarks (m ≪ ΛQCD): hadronization respects energy flow

– Parton-hadron duality

– Were it not for light quarks all of QCD would be NRQCD

– Analogies to calculations:

∗ Energy flow expectations ⇔ calorimetric measurements

∗ Event generators ⇔ multi-particle cross sections



– But sometimes want to introduce new scales

say (1 − T )Q, mass of narrow jets in e+e− annihilation

– And anyway the formation of initial-state hadrons

is never short-distance . . .



• Generalization: factorization

Q2σphys(Q,m) = ωSD(Q/µ,αs(µ)) ⊗ fLD(µ,m) + O (1/Qp)

– µ = factorization scale; m= IR scale (m may be perturbative)

– New physics in ωSD; fLD “universal”

– Deep-inelastic (p = 2), pp̄ → QQ̄ . . .

– Exclusive decays: B → ππ

– Exclusive limits: e+e− → JJ as mJ → 0



• Whenever there is factorization, there is evolution

0 = µ
d

dµ
lnσphys(Q,m)

µ
d ln f

dµ
= −P (αs(µ)) = −µ

d ln ω

dµ

• Wherever there is evolution there is resummation

lnσphys(Q,m) = exp

{

∫ Q

q

dµ′

µ′
P (αs(µ

′))

}



• Infrared safety & factorization proofs:

– (1) ωSD incoherent with long-distance dynamics

– (2) Mutual incoherence when vrel = c:

Jet-jet factorization Ward identities.

– (3) Wide-angle soft radiation sees only total color flow:

jet-soft factorization Ward identities.

– (4) Dimensionless coupling and renormalizability

⇔ no worse that logarithmic divergence in the IR:

fractional power suppression ⇒ finiteness



– Summary for e+e−: factorization into universal jets + soft

σ =
∏

jets j

Jj(pj) S{j}

we’ll come back to this



• Themes of this Loopfest

A. Bringing new physics to the foreground in precision

measurements matched with precision theory

– Instrinsic theoretical uncertainties in the Standard Model

can be smaller than those of extensions like SUSY. Why

wait for experiment?

– Venturing to higher loops in extensions of the Standard

Model requires consistent treatment of renormalization

in addition to calculational power.



– Two loop Yukawa corrections in MSSM:

MW and weak mixing. G. Weiglein, S. Heinemeyer

– The high price of giving up custodial SU(2)

in extensions of the Standard Model. T. Krupovnickas

– Fermionic and bosonic corrections to weak mixing

in the Standard Model. M. Awramik

– O(α2) corrections to dΓ/dx for µ decay. K. Melnikov

– Exploration of EW corrections and uncertainties

in MW . U. Baur



– In QCD pecial requirements of t̄t near threshold

resummations in αs/v and αs ln v: advances to

NNLL/νNRQCD A. Hoang

– NNLO and NNLL in K+ → π+νν̄. O(αs
2) in coefficients

and O(αs
3) in anomalous dimensions. U. Haisch

– Qualitative advances of a few years ago are today’s

commonplace tools (requiring uncommon skill to use)

(approximate) Quote of the workshop: “Only a few diagrams, about 300.”

– The exploitation of advances in computing power



B. The background to New Physics: QCD corrections

analytic and numerical tracks

– Taming NNLO cross sections: how to use infrared safety?

∗ Subtractions and antennae:

Implementing soft-jet factorization

Organized into the number of “unresolved” partons

σNNLO =

∫

n+2

(

dσ
(0)
n+2 − dα

(0)
n+2 − dγ

(0)
n+2 + dβ

(0)
n+2

)

+ . . .

α(0), γ(0) single and double-particle subtractions

γ(0) eliminates double counting W. Kilgore, T. Gehrmann



Explicit NNLO subtractions for 3-jet cross sections in e+e−

organized around color connections (antennae)

T. Gehrmann, A. Gehrmann-De Ridder

∗ Sector decomposition

F. Petriello

Utilize logarithmic bounds on singularities

PS =
∏

i

∫

dλiλ
aiε
i (1 − λ)biε

Chosen such that |M |2 ∼ 1/λi, to develop Laurent series:

1

λ1+ε
=

1

−ε
δ(λ) +

[

1

λ

]

+

+ . . .



Transparent implementation of experimental cuts

consistent with infrared safety Petriello, Melnikov

Another exploitation of computing capability

∗ Similar themes in GRACE evaluation of phase space

integrals toward NLO QCD generator. Y. Kurihara

∗ Semi-numerical calculations for virtual corrections

to Higgs plus jets in heavy-top effective theory

Laurent expansion (again). G. Zanderighi



C. Advances at tree and NLO

What it looks like to one outsider: Degree of difficulty.

Difficulty = C × E exp [L/(1 + N )]

with E = number of external lines, L = number of loops

N = number of supersymmetries

– Progress in QED scattering generators. S. Yost, A. Lorca

– Multipurpose automated computation

D. Rainwater, K. Yoshimasa, A. Lorca

– Matching parton showers to NLO P. Skands, Z. Nagy



– Recursive trees and the new analytic continuation:

spinors, tree and loops. L. Dixon

( kµσµ )
αα̇

= λαλ̃α̇

∗ Continuation of a story from the previous Loopfest

∗ The newest features come from

“on-shell analytic continuation”

λ1 → λ̂1 = λ1 − zλn

∗ Recursion in tree diagrams

∗ Progress toward recursion at NLO

∗ Ultimate role of twistor space not settled



• What resummation says about virtual corrections

– Context: Breakthroughs in multiscale NNLO matrix elements,

anomalous dimensions and amplitudes

(Tausk, Smirnov, Anastasiou, Glover, Oleari Tejeda-Yeomans,

Bern, De Freitas, Dixon, Gehrmann, Remiddi . . . )

– Progress in the resummation of logarithmic corrections

to all orders in perturbation theory

– Challenge of cross sections: especially with realistic cuts

– Synergy between the two in this context?

– Resummation is based on jet-soft-jet factorization

with simplified color structure.



• The structure of elastic amplitudes in dimensional regularization

– Partonic processes

f : fA(ℓA, rA) + fB(ℓB, rB) → f1(p1, r1) + f2(p2, r2) + . . .

f ′ : V (Q) → f1(p1, r1) + f2(p2, r2) + . . .

– Color tensor

M[f]
{ri}

(

{℘j},
Q2

µ2
, αs(µ

2), ǫ

)

= M[f]
L

(

{℘j},
Q2

µ2
, αs(µ

2), ǫ

)

(cL){ri}

≡
∣

∣

∣
M[f]

〉

– Recursion relations in infrared structure

(Catani 98, Tejeda-Yeomans GS (03), Bern Dixon Kosower (05))



• Color tensor factorization

M[f]
L

(

℘i,
Q2

µ2
, αs(µ

2), ǫ

)

= J [f]

(

Q2

µ2
, αs(µ

2), ǫ

)

×S
[f]
LI

(

℘i,
Q2

µ2
, αs(µ

2), ǫ

)

h
[f]
I

(

℘i,
Q2

µ2
, αs(µ

2)

)

• The factors . . .

– An infrared safe coefficient hI for each color tensor I

– Coherent virtual soft gluon exchange function SLI:

interpolates short to long distance color tensors

– Product of “jets” collinear to external lines: color diagonal



• The jet functions:

J [f]

(

Q2

µ2
, αs(µ

2), ǫ

)

≡
∏

i

J
[fi]
(virt)

(

Q2

µ2
, αs(µ

2), ǫ

)

– Definitions form 1singlet ↔ 2: J [i] = J [̄i] =
√

M [īi→1]

M[īi→1]

(

Q2

µ2
, αs(µ

2), ǫ

)

= exp

{

1

2

∫ −Q2

0

dξ2

ξ2

[

K[i](αs(µ
2), ǫ)

+G[i]

(

−1, ᾱs

(

µ2

ξ2
, αs(µ

2), ǫ,

)

ǫ

)

+
1

2

∫ µ2

ξ2

dµ̃2

µ̃2
γ

[i]
K

(

ᾱs

(

µ2

µ̃2
, αs(µ

2), ǫ

))

] }



– Derived from factorization

(Mueller 79, Collins-Soper, Sen 80)

– Compare to fixed-order by re-expansion of αs in D dimensions

(Magnea-GS 91)

– Anomalous dimensions K, G, γK ↔ A available to 2, 2, 3 loops

(Moch,Vermaseren,Vogt,Gehrmann, 2005)



• The soft functions

S
[f]

(

Q2

µ2
, αs(µ

2), ǫ

)

= P exp

[

−1

2

∫ −Q2

0

dµ̃2

µ̃2
Γ

[f]

(

ᾱs

(

µ2

µ̃2
, αs(µ

2), ǫ

))

]

– From evolution equation: d
d ln Q

SLI = −Γ
[f]
LJ SJI

(Botts-GS 85, Kidonakis, Oderda-GS 98)

– LL in soft → NNLL overall:

– “The fifth form factor” (Dokshitzer and Marchesini 08/05)

Relation of t → u and N → ∞?



• What we know; what we need to know

– ΓS known at 1 loop, “available” at 2

– For γK to αs
n+1, K, G, ΓS to αs

n: 1/ǫP , P > 1. m → m′

– For 1/ǫ need only Sudakov form factor and ΓS to αs
n+1

– Color evolution is entirely in the soft function. Could indicate

simplifications in subtraction color structure.

– Reproduces ǫ structure of QCD 2 → 2 amplitudes

– A recent surprise, motivated by study of SYM and heroic

calculation of 3 loop planar diagrams . . .



• Recursive infrared structure of 2 → 2 at 3 loops

(Tejeda Yeomans GS (03), Bern, Dixon, Smirnov (05) [Maximal SYM])

|M[f(3)]〉 = F
[f(1)](ǫ)|M[f(2)]〉 + F

[f(2)](ǫ)|M[f(1)]〉
+F

[f(3)](ǫ)|M[f(0)]〉 + |M[f(3)]
UV 〉

– where for example . . .



– The coefficient of |M[f(0)]〉

F
[f(3)](ǫ) = −1

3

[

F
[f(1)](ǫ)

]3

− 1

3
F

[f(1)](ǫ)F [f(2)](ǫ) − 2

3
F

[f(2)](ǫ)F [f(1)](ǫ)

−
(

β0

4ǫ

)2

F
[f(1)](3ǫ) +

(

β0

4ǫ

)

{

−1

2

[

F
[f(1)](ǫ)

]2

− F
[f(2)](ǫ)

+
1

2

(

K +
β0

2ǫ

)

[

2F [f(1)](3ǫ) − F
[f(1)](2ǫ)

]

+ L
[f(2)](3ǫ) − 1

2
L

[f(2)](2ǫ)

}

+
1

2
L

[f(3)](3ǫ),

– All F’s, L’s on the right are combinations of

γK to αs
3, K, G, ΓS to αs

2, and 1
ǫ



• Concluding Comments

– Perturbative quantum field theory is vibrant, opportunistic

and inspires total dedication. There seems no other way to

get things right.

– The capabilities of experiment and theory are well matched

and mutually inspiring.

– The field was advanced qualitatively by 2-loop

computations and three-loop anomalous dimensions,

and applications are still being found.



– Amazing (to me at least) advance in analytic results within

the previous year,

– As well as in the power of numerical approaches.

– There is further potential for applications of resummation

whose power is greatly enhanced by exact 2-loop results.

– Is it possible to combine the nominal flexibility of

sector decomposition with physically-motivated subtraction

formalism that makes use of the universality in

final-state evolution?



– The somewhat coarser resolutions and backgrounds

at the LHC may paradoxically provide the time to fully realize

the potential of techniques that are now being developed

and reach fruition at a future (but not too far future) ILC


