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Objective:

We have heard several talks about attempts to
construct general purpose algorithms for NNLO. 1
am less ambitious but more impatient. My goal 1s:

A fully inclusive Parton-Level Monte Carlo calculation
of Drell-Yan at NNLO.

I am not trying to construct a general algorithm.
Instead, the 1dea 1s to leverage the techniques of
inclusive calculations to obtain exclusive information.



Why keep flogging Drell-Yan?
*Inclusive NNLO known for more than 10 years.
[Hamberg et al. ;Harlander & W.K.]

*Rapidity Distributions at NNLO are now known.
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Why keep flogging Drell-Yan?

*We do not yet have a fully exclusive calculation of
Drell-Yan.

Existing NNLO calculations compute massive vector
boson production, not di-lepton production. Particle
detectors detect leptons. Also, there are measurements
to exploit (forward-backward asymmetry) with a fully
exclusive calculation of Drell-Yan.

* A Parton-level Monte Carlo will permit a fully
exclusive calculation of Drell-Yan production.



Why keep tlogging Drell-Yan?
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How can I do this?

Petriello has told us about one method for doing this
calculation: Sector Decomposition.

I want to try a different approach, more in line with
methods developed for Next-to-Leading order
calculations over the last ~15 years.

I want to implement a subtraction scheme, using
local counter-terms, in a more-or-less standard
Monte Carlo framework.



Subtraction at NLO

Next-to-Leading Order calculations consist of two
contributions:

Virtual Corrections to one loop.

Single Real Emission Corrections at tree-level.
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Both terms are infrared singular.



Subtraction at NLO

A subtraction scheme adds a local counter-term to
both Virtual and Real Correction terms, canceling
the infrared singularities.
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Both terms are now infrared finite.
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Subtraction at NNLO

At Next-to-Next-to-Leading Order, there are three
contributions:

Virtual Corrections to two loops.
Single Real Emission Corrections to one loop.
Double Real Emission Corrections at tree-level.
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All three terms are infrared singular.



Subtraction at NNLO

A normal NLO subtraction scheme will take care of
the singly-infrared singular regions.
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We still must deal with doubly-infrared regions of
both do and d«.



Subtraction at NNLO

We need counter-terms to tree-level double real
emission, one-loop single real emission and a
counter-term to single real emission from the
counter-term!
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NNLO Counter-terms

We have already seen a few talks about efforts to
construct a general formula for the counter-terms
we need. As I am not interested 1in generality, a
very simple choice 1s available to me:

I can use the matrix elements themselves as the counter-

terms and map them to the appropriate doubly singular
point 1in phase space.
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Production Observables

In a process like Drell-Yan, production variables
like the gauge boson rapidity are readily obtained in
the radiative (2—3) phase space, but must also be
made available to the integrated counter-term in the
virtual phase space.
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The integral 1n the virtual phase space cannot be just
the inclusive cross section!



A First Attempt

My 1nitial proposal for capturing the production
information envisioned computing each component,
o(qg—Vgg),o(gg—Vgq),.. , andthen
decomposing the result into a convolution
reminiscent of mass factorization.
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First Attempt

Schematically, this solution 1s:
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Rapidities
The rapidity of the gauge boson would be
determined by the momentum fractions of the
incoming partons, S = X, X, s, and the fractions of
those momentum fractions that go into gauge boson
production, z = w,w, = M;/5.
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Convolution Terms
The convolution terms could be solved for

iteratively. For instance, for o (gg—V gg):
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Flaws with the First Attempt

This first attempt 1s not entirely satistactory.
* [t seems to be more of a parameterization than a
derivation.
® It 1s not clear that the solutions for the convolution
terms are unique. There may be cancellations in the
integrated cross section from terms that give
differences in the differential cross section.



Second Attempt: Turn things around

Another approach is to turn things around. Instead
of mapping integrated matrix elements onto
convolutions, map convolutions into matrix element
integrals.
* All contributions are mapped into 2—3 body
phase space integrals using the factorization
properties of phase space and QCD amplitudes.
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Turning things around
Schematically,
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Parameterizing Phase Space

In calculating the inclusive cross section, van
Neerven et al. chose different parameterizations of
phase space to simplify the calculation of each term.

If we 1nstead choose a particular parameterization,
we can focus on a single kinematic invariant to
determine the production characteristics.
* Specifically, for a given §, M, a single
invariant, say s,,, will determine the rapidity of

the gauge boson at the doubly-singular point.



Double Singularities

In general, one needs to know both s,, and s,, to
determine the rapidity of the gauge boson. In
doubly-singular configurations however, all
particles are confined to the beam axis.

In this constrained kinematics, it 1s sufficient to
know only one of the two invariants. So, if we map
all configurations with a particular value of s, to
the corresponding doubly-singular configuration,
we have a suitable subtraction counter-term.



Mapping to the Doubly-Singular Point

The surface
describes the
possible values

of p, for given
values of

SIS .




Mapping to the Doubly-Singular Point

All points on
the surface

map to the
doubly-
singular point.
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Mapping to the Doubly-Singular Point

In the 2—3

phase space, all
points are
mapped and
then integrated.
In the 2—1

phase space all

points are

integrated and

then mapped.




Fully Exclusive Drell-Yan

Existing calculations of Drell-Yan production at
NNLO have been fully inclusive of leptonic

observables. With a parton-level Monte Carlo, 1t 1s
possible to be fully exclusive of these observables.

This means capturing the spin correlations. Writing
the cross section as the scalar product of hadronic
and leptonic tensors, o= H*" L . After averaging
over the lepton observables, |L,, is proportional to

the metric tensor. So, fully inclusive calculations
retain only the trace of the hadronic tensor, H”,.



Fully Exclusive Drell-Yan

Being exclusive in the lepton observables means
that we need the full structure of the hadronic
tensor.

This means that the calculation must be performed
in an oriented phase space. The frame I use for the
calculation 1s the gauge boson rest frame, with
incoming parton p, defining the z axis and the
lepton momenta defining the x-z plane. s,, defines

the rapidity of the subtraction point.



Axial Terms

Capturing the full structure of the hadronic tensor
means computing axial-vector terms too, which were
annihilated by taking the trace in inclusive results.

No new two-loop calculation 1s needed (almost).
Consistency (modulo anomaly terms) between o
and o'’ and the universal structure of infrared
singularities fully determines o’ .

In the soft limit, the only 1 v
anomaly contribution comes A >Mw \
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Consistency conditions

The soft factorization properties of QCD and Catani's formula state that
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Status of the Calculation

I am collaborating with John Campbell to construct
a full NNLO Monte Carlo program.

There are two main projects going on:
® Analytic integration of the subtraction term into
the 2—1 phase space.
®* Numerical integration of subtracted cross
sections 1n the 2—3 and 2—2 phase spaces.
We expect results by early Fall.



Conclusions

* I have outlined a program for constructing a fully
exclusive Monte Carlo calculation of Drell-Yan
production at NNLO.

® This program leverages the techniques developed
for single-inclusive production processes, but
cannot be readily applied to a more general
framework.

® Most of the technical 1ssues have been worked
out and we expect a working implementation by
early Fall.



