SUSY-MADGRAPH

David Rainwater

University of Rochester

LoopFest 2005, Snowmass

- SUSY MadGraph
- WBF SUSY pairs
- QCD SUSY pairs plus jets

NEW MADGRAPH & MADEVENT

MADGRAPH: [Stelzer & Long 1994]

Tool for generating Fortran code to calculate matrix elements.

(Fairly) recent additions: "MADGRAPH II"

- · color subamps match PSMC color flows (QCD L.H. accord)
- · can define Majorana fermions (uses Denner scheme)
- "arbitrary" number of external particles
- can specify inclusion/exclusion of intermediate states

MADEVENT: [Stelzer & Maltoni 2001]

Web-based, CompHEP-like front end:

calculates collider σ 's w/ kinematic cuts, makes plots.

Parallelized! 22 nodes (64 nodes at Rome soon)

Majorana fermions in MadGraph II

Example of Denner scheme implementation: $uu \rightarrow u_L u_L$ (t-channel gluino)

Clashing arrows at fermion vertices!

Use charge-conjugate (CC) wave function for $u(p_2)$ and CC vertex at clashing arrows: only 1 overall fermion flow needs to be defined, no ambiguity and no worry over extra (-) signs internally.

SUSY-MADGRAPH

Package is standard MADGRAPH II plus:

- 1. MSSM model input files (particles, interactions)
- 2. routine to read SUSY Les Houches Accord spectrum input
- 3. routine to calculate MSSM couplings

Improvements over previously available tools:

- full spin correlations to final state
- higher-order SUSY processes trivial
- consistent theoretical treatment of couplings

Testing SUSY MADGRAPH:

- \rightarrow all $e^+e^- \rightarrow$ SUSY pairs checked with literature
- ightarrow all pp
 ightarrow SUSY pairs in Prospino checked
- \rightarrow all possible $VV, VH \rightarrow$ SUSY pairs checked for unitarity
- → >375-process comparison with Whizard & Sherpa

SUSY MadGraph sundry technical details

- R-parity conserving MSSM
- no CP violation (but user could straightforwardly add)
- · diagonal CKM
- · no SUSY breaking scheme assumed, because:
- spectrum & parameters taken from SLHA input files, so order of masses/mixings externally governed;
 sparticle widths taken from Sdecay SLHA files
- ino mixing matrices taken to be real
 - → negative ino masses OK in matrix elements
- no quartic scalar couplings (useless for collider physics)

Particles data file (sample)

```
#Name anti_Name Spin Linetype Mass Width Color Label Model
# Quarks
t t\sim F S MT WT T t XXX
# Squarks
dl dl\sim S D MDL WDL T dl XXX
# Leptons
e- e+ F S ZERO ZERO S e XXX
# Sleptons
el- el+ S D MEL WEL S el XXX
sve sve\sim S D MVE WVE S ve XXX
# Vector Bosons
q q V C ZERO ZERO O _ XXX
z z V W MZ WZ S Z XXX
w- w+ V W MW WW S W XXX
# Higgs
h1 h1 S D MH1 WH1 S h XXX
h- h+ S D MHC WHC S hc XXX
# Inos
go go F S MGO WGO O g XXX
n1 n1 F S MN1 WN1 S N1 XXX
x1-x1+FSMX1WX1SX1XXX
```

Interactions data file (sample) [>800 lines]

```
# FFV (weak inos)
n1 n3 z GZN13 QED
x1- x2- z GZX12 OED
n1 \times 1 - w + GWN1X1 OED
# FFS (Yukawa)
b b h2 GH2BB QED
# FFS (gluinos)
d go dl GQLGOM QCD
go d dl∼ GQLGOP QCD
# FFS (Higgs and weak inos)
x1- x2- h1 GH1X12 OED
x2- x1- h1 GH1X21 QED
# VSS QED non-Higgs
z dl dl\sim GZDLDL QED
# VSS Higgs
w+ h- h1 GWHCH1 QED
# SSS Higgs-sfermion
h1 t1 t1\sim GH1T1T1 QED
# VVSS mixed QCD-QED
q a dl dl\sim GGADLDL DUM QCD QED
# VVSS QED Higgs
z z h1 h1 GZZH1H1 DUM OED OED
```

EW parameters and SUSY scattering

Warning! – blind use of SUSY spectrum generator input will yield unitarity violation for $VV \to \chi_i \chi_j$ (discovered in testing)

Reason: for unitarity cancellation, need exact match between g_w at interactions vertices with $g_w v$ (M_V) in weak ino fermion masses.

--- extract EW info from ino mixings

Effective EW parameters from ino mixing matrices

SUSY spectrum generators run EW parameters to SUSY scale to compute ino mixing matrices - mismatch with weak-scale values.

Assume the LO form for the matrices:

$$\begin{pmatrix} m_{\tilde{B}} & 0 & -m_{Z}s_{w}c_{\beta} & m_{Z}s_{w}s_{\beta} \\ 0 & m_{\tilde{W}} & m_{Z}c_{w}c_{\beta} & -m_{Z}c_{w}s_{\beta} \\ -m_{Z}s_{w}c_{\beta} & m_{Z}c_{w}c_{\beta} & 0 & -\mu \\ m_{Z}s_{w}s_{\beta} & -m_{Z}c_{w}s_{\beta} & -\mu & 0 \end{pmatrix}, \begin{pmatrix} m_{\tilde{W}} & \sqrt{2}m_{W}s_{\beta} \\ \sqrt{2}m_{W}c_{\beta} & -\mu \end{pmatrix}$$

- 1. knowing μ , $\tan\beta$, $m_{\tilde W}$ and $m_{\tilde B}$, extract m_Z , m_W and \sin^2_W in the on-shell scheme ($\sin^2\theta_W=1-M_W^2/M_Z^2$)
- 2. then choose G_F as the 3rd EW input parameter and go on
- \rightarrow preserves unitarity of $VV \rightarrow XX$ scattering
- \cdot don't know if this is necessary for LHC calc's 10% diffs?
- holds to all EW order? dunno → we will check…

WBF SUSY PAIRS AT LHC

[Cho, Hagiwara, Kanzaki, Plehn, DR, Stelzer (preliminary)]

Idea: weak boson fusion production of weakly-interacting particles (Higgs) can reduce backgrounds - works for SUSY?

[charginos: Datta, Konar, Mukhopadhyaya, 2001; sleptons: D. Choudhury et al., 2003]

Previous studies reported mixed results for chargino visibility, positive results for sleptons.

Examine
$$\chi_i^0\chi_j^0$$
, $\chi_i^0\chi_j^\pm$, $\chi_i^+\chi_j^-$, $\chi_i^\pm\chi_j^\pm$, $\tilde{\ell}^\pm\tilde{\nu}$, $\tilde{\ell}^+\tilde{\ell}^-$ in WBF

Comparison with previous analyses: mostly agreement, huge difference for $\tilde{\ell}^{\pm}\tilde{\nu}$ (previous calculations were only WBF, ignored Brem. diagrams)

 $\sim 10\%$ difference w/wout EW ripping scheme; particle widths <1% effect.

WBF xsecs shown do not apply "tagging jet" cuts; cuts would reduce rates by factor $\sim 2-4$

- Note: do NOT need tagging jet cuts for $\chi_1^+\chi_1^+$; channel will be difficult, maybe marginal, but worth pursuing
- ▶ WBF $\tilde{e}_L \tilde{\nu}$ seems to disagree with literature, but very difficult to compare precisely
- ► WBF stau pairs comparable to DY! could double LHC rate

SPS	1a	1b	2	3	4	5	6	7	8	9
$ ilde{ au}_1^+ ilde{ au}_1^-$	26.3	14.9	0.012	18.4	9.0	17.0	11.2	30.0	18.9	4.4
$ ilde{ au}_1^+ ilde{ au}_2^-$	0.005	0.002	0	0.001	0.001	0.002	0	0.002	0	0
$ \begin{vmatrix} \tilde{\tau}_1^+ \tilde{\tau}_2^- \\ \tilde{\tau}_2^+ \tilde{\tau}_2^- \end{vmatrix} $	14.2	4.9	0.011	7.3	3.0	9.2	4.4	9.3	4.6	3.3

(these x-secs with rapidity gap: $\triangle R(jj) > 4.2$)

QCD SUSY PAIRS + JETS AT LHC

Squarks and gluinos easily discovered at LHC:

high- p_T multijets + leptons signal via cascade decays

- mass diff.'s via jet/lep "edges"
 [Hinchliffe & Paige; Allanach et al.]
- $ightharpoonup ilde{g} ilde{g}, \, ilde{g} ilde{q}, \, ilde{q} ilde{q}$ samples separated by # of hard jets

How many hard jets does QCD give in SUSY events?

[Plehn, DR, using SMADEVENT]

extra hard jets affect cascade studies - how many are there?

NLO $\tilde{g}\tilde{g}j$, $\tilde{q}\tilde{q}^*j$ rates not known, but can calc. hard real emission Generate events with $p_T(j)>50(100)$ GeV at LHC:

600 GeV top quarks, gluino pairs, \tilde{u}_L + \tilde{g} [SPS1a]

	$\sigma_{Tar{T}}$	$\sigma_{\widetilde{g}\widetilde{g}}$	$\sigma_{ ilde{q} ilde{g}}$
Oj	1.30 (1.30)	4.83 (4.83)	5.65 (5.65)
1j	1.50 (0.73)	5.91 (2.89)	5.38 (2.74)
2j	1.21 (0.26)	4.16 (1.09)	3.18 (0.85)

- $\cdot +1j, 2j$ is so large because of flavor unlocking of initial state
- · question: at which p_T is the Sudakov factor important?

PYTHIA 6.3 normalized to NLO rate (PROSPINO)

- Q^2 -ordered shower great for 1j, drastically low for 2j
- p_T^2 -ordered shower too hard for 1j, funny shape for 2j
- M.E. valid for $p_T \gtrsim 100~{
 m GeV}
 ightarrow {
 m due}~{
 m to}~{
 m log}({M \over p_T})$

$\tilde{u}_L \tilde{g}$ plus jets for SPS1a [Plehn, DR, Skands, preliminary]

PYTHIA 6.3 normalized to NLO rate (PROSPINO)

- same general conclusions as for $\tilde{g}\tilde{g}$ + jets

Remaining work to be done: [Plehn, DR, Skands]

- · compare Pythia & M.E. angular dist'bns in progress
- · understand M.E. matching future task

Keep in mind: non-trivial uncertainty for both M.E. and Pythia over <u>amount</u> of extra jet radiation.

- \rightarrow need study of $t\bar{t}$ +jets @ Tev2 (help tune Pythia)
- ightarrow need full NLO calculation of ttj [in progress: Brandenburg, Dittmaier, Uwer, Weinzierl]
- \rightarrow must include matrix elements for $\tilde{g}\tilde{g}j$, $\tilde{g}\tilde{q}j$, $\tilde{q}\tilde{q}j$ in Pythia (Sherpa can already do this)
- → Pythia will have to be tuned!

SUMMARY

- SUSY MadGraph/MadEvent: new tools for complete calculations of MSSM processes at colliders
- some interesting theory issues on consistent treatment of couplings, but does not appear to affect LHC pheno
- WBF colorless SUSY pairs xsec's small, but some may be interesting - needs further study
- heavy colored SUSY pairs + jets will affect LHC cascade decay pheno, but investigations still in early stages
- mixed-flavor production promising for extracting SUSY parameters (but difficult)