Measuring the W Mass: Electroweak Radiative Corrections

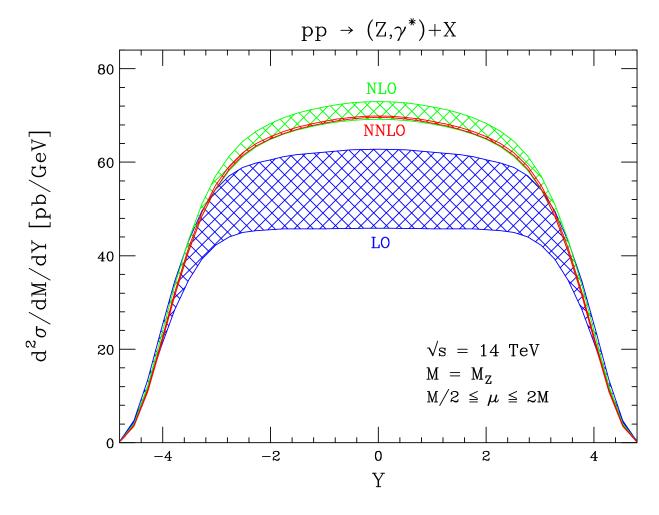
- 1. Why are Electroweak Radiative Corrections important?
- 2. M_W , $\sin^2 \theta_{eff}$ and M_H
- 3. Hadron Colliders: Electroweak Radiative Corrections to W and Z boson production
- 4. Linear Collider: Radiative Corrections to $e^+e^- \rightarrow 4f$
- 5. Conclusions

Ulrich Baur
State University of New York at Buffalo

1 — Why are Electroweak Radiative Corrections important?

- Precise measurements have to be matched by precise theoretical predictions
 - present and future collider experiments aim at measuring observables (cross section, mass, width,...) at the % level or better
 - reed to take into account higher order corrections
- QCD corrections:
 - Arr NLO: typically 20 30%
 - NNLO: typically a few %
 - * taking into account QCD corrections reduces (sometimes dramatically) the renormalization and factorization scale uncertainty

rightharpoonup example: Z boson rapidity distribution (Anastasiou, Dixon, Melnikov, Petriello)

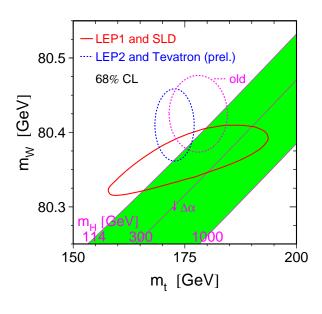


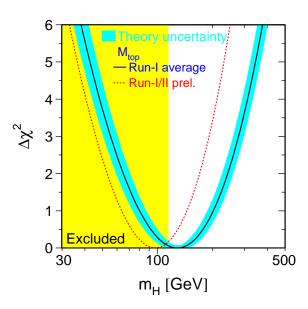
- electroweak radiative corrections:
 - rightharpoonup 1-loop: naively of $\mathcal{O}(\alpha) \leq 1\%$
 - why bother?
- possible exceptions:
 - logarithmic enhancement factors
 - \rightarrow collinear: $\log(\hat{s}/m_f^2)$,
 - \rightarrow Sudakov: $\log(\hat{s}/M_{W/Z}^2)$
 - rightharpoonup QCD corrections are small (example: W/Z cross section ratio)
 - $rac{1}{2}$ and/or very precise measurements $(M_W, \sin^2 \theta_{eff})$
- in some cases need \geq 2-loop EWK corrections
 - should be able to make use of techniques developed for NNLO QCD corrections

$2-M_W,\sin^2\theta_{eff}$ and M_H

• 1-loop corrections to M_W and $\sin^2 \theta_{eff}$ depend quadratically on the top quark mass, m_t , and logarithmically on M_H

measuring M_W ($\sin^2 \theta_{eff}$) and m_t one can extract information on M_H





- fit results depend on
 - experimental uncertainties
 - and theoretical uncertainties
 - → primordial theoretical uncertainties: associated with the extraction of (pseudo)observable from measured quantities
 - example: M_W from transverse mass distribution
 - → intrinsic theoretical uncertainties: from unknown higher order corrections

example: "blueband"

Experimental Uncertainties: Looking into the Crystal Ball

	present	Tev. run2	LHC	LC	GigaZ
$\delta \sin^2 \theta_{eff} \ (\times 10^{-5})$	14	63	14 - 20	6	1.3
δM_W [MeV]	34	27	10 - 15	10	7
$\delta m_t \ [{ m GeV}]$	5.1	2.7	1.0	0.2	0.13
$\delta M_H/M_H$ (indirect)	60%	35%	20%	15%	8%

- need intrinsic theoretical uncertainties which are considerably smaller than experimental uncertainties
- estimate size of missing higher order corrections to M_W and $\sin^2\theta_{eff}$ (Erler)
 - collect all relevant enhancement and suppression factors
 - set remaining coefficient (from loop integrals) to unity
 - choose largest group theory factor

- estimate largest theoretical uncertainties come from
 - $\mathcal{O}(\alpha^2 \alpha_s)$ corrections for M_W (Awramik et al.)
 - $\mathcal{O}(\alpha^3)$, $\mathcal{O}(\alpha^2\alpha_s^2)$ and $\mathcal{O}(\alpha^2\alpha_s)$ beyond m_t^4 corrections for $\sin^2\theta_{eff}$
- estimated intrinsic theoretical uncertainty

$$\delta M_W^{th} \approx 4 \text{ MeV} \quad \delta \sin^2 \theta_{eff} \approx 5 \times 10^{-5}$$

- ultimate goal: bring intrinsic theoretical uncertainties down to
 - $\mathcal{O}(1 \text{ MeV}) \text{ for } M_W$
 - $rac{10^{-6}}{\text{ and }} \mathcal{O}(\text{few} \times 10^{-6}) \text{ for } \sin^2 \theta_{eff}$
 - → if we want GigaZ option
- probably need full 3-loop corrections to $\sin^2 \theta_{eff}$ and $\mathcal{O}(\alpha^2 \alpha_s)$ corrections to M_W

3 – Electroweak Radiative Corrections to W and Z Boson Production

- example for primordial theoretical uncertainties
- for W mass measurement, need radiative corrections for W and Z boson production:
 - $rightharpoonup Z o \ell^+\ell^-$ data constrain lepton scale and resolution
 - calibrate using using LEP data

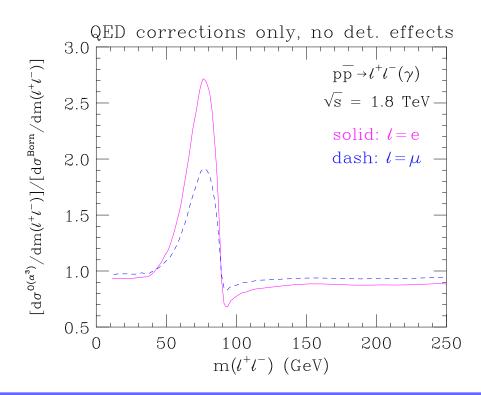
 - \rightarrow include QED corrections (change the Z mass extracted from data)
 - → include purely weak corrections
 - \rightarrow include $\mathcal{O}(G_F^2 m_t^2 M_W^2)$ corrections to $\sin^2 \theta_{eff}$

- Treatment of collinear singularities:
 - Final state collinear singularities are regulated by finite lepton masses
 - Initial state collinear singularities are universal to all orders and are absorbed into the parton distribution functions (PDF's), in complete analogy to QCD
 - \rightarrow for a consistent treatment of the $\mathcal{O}(\alpha)$ initial state corrections, QED corrections have to be incorporated into the global fitting of PDF's
 - → PDF's with QED corrections exist now: MRSTQED2004

- 1-loop EWK corrections shift W and Z masses by $\mathcal{O}(100 \text{ MeV})$
 - most of the effect comes from final state photon radiation
 - proportional to

$$\frac{\alpha}{\pi} \log \left(\frac{\hat{s}}{m_{\ell}^2} \right)$$

- \rightarrow these terms significantly influence the $\ell^+\ell^-$ inv. mass distribution
- taking only QED corrections into account



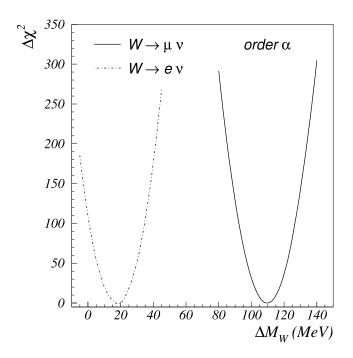
- integrating over $m(\ell\ell)$, the large positive and negative corrections cancel (KLN theorem)
- Detector effects may significantly influence the QED corrections:
 - It is difficult to discriminate electrons and photons which hit the same calorimeter cell
 - \rightarrow recombine e and γ momenta to an effective electron momentum in that case
 - → an inclusive quantity is formed
 - \rightarrow the mass singular terms $((\alpha/\pi)\log(\hat{s}/m_\ell^2))$ disappear (KLN again...)
 - → the effect of the QED corrections is reduced
 - Muons must be consistent with a minimum ionizing particle
 - \rightarrow require $E_{\gamma} < 2$ GeV in cell traversed by muon
 - → this reduces the hard photon part
 - → the mass singular terms survive

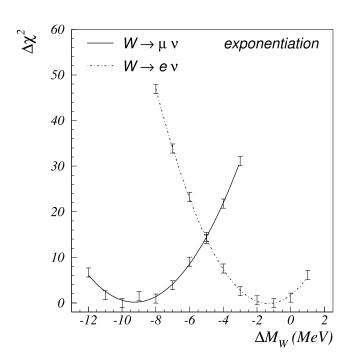
- calculations of the complete $\mathcal{O}(\alpha)$ EWK corrections to
 - $rightharpoons p(p) \rightarrow W^{\pm} \rightarrow \ell^{\pm} \nu$ (Dittmaier+Krämer, UB+Wackeroth)
 - riangleq and $p_p^{(-)} o \gamma$, $Z o \ell^+\ell^-$, including $\mathcal{O}(G_F^2 m_t^2 M_W^2)$ corrections to $\sin^2 \theta_{eff}$ (UB et al.) exist now
- if final state photon radiation shifts W mass by $\mathcal{O}(100)$ MeV:

 - riangleq effect should be more pronounced in Z case since both final state leptons radiate
 - we two photon radiation is known to significantly change the shape of the $m(\ell\ell)$ and M_T distributions (UB, Stelzer)

- recent progress in taking multi-photon radiation into account: two approaches
 - YFS exclusive exponentiation (Jadach, Placzek)
 - \rightarrow currently only at parton level and for W decay
 - → procedure used is gauge invariant
 - QED structure function approach (Montagna et al.)
 - → only final state corrections are presently incorporated
 - → procedure used is not gauge invariant
 - \rightarrow however, terms violating gauge invariance are numerically small (< 0.1%)
- Montagna et al. calculate shift in M_W using simplified detector model:
 - \rightarrow combine e and γ momenta for $\Delta R(e, \gamma) < 0.2$
 - \rightarrow reject μ events if $E_{\gamma} > 2$ GeV and $\Delta R(\mu, \gamma) < 0.2$

result:





Note: absolute value of shift caused by $\mathcal{O}(\alpha)$ corrections smaller than value observed by CDF/DØ, due to simplified detector model

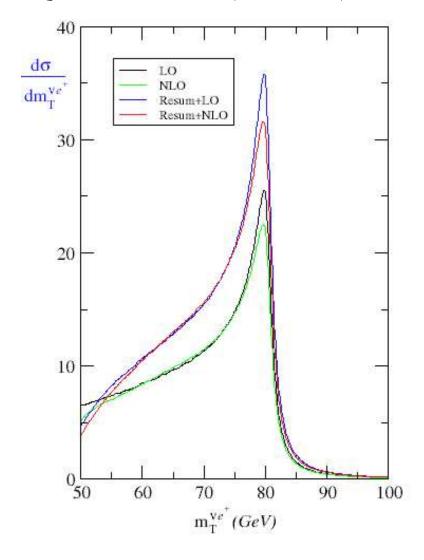
rightharpoonup a similar calculation in the Z case also exists now

- for W mass analysis need calculation of W and Z production including electroweak and resummed QCD corrections

 - p_T resolution determines how "sharp" the edge in the M_T distribution at $M_T \approx M_W$ is
 - rightharpoonup which in turn determines how well M_W can be measured
- first step towards this lofty goal:
 - incorporate final state photon radiation effects into RESBOS calculation (Cao, Yuan)

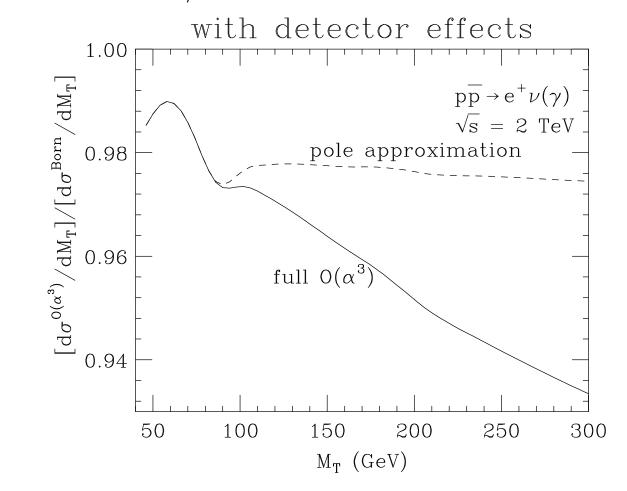
NLO: $\mathcal{O}(\alpha)$ QED final state radiation

Resum: resummed QCD corrections (RESBOS)



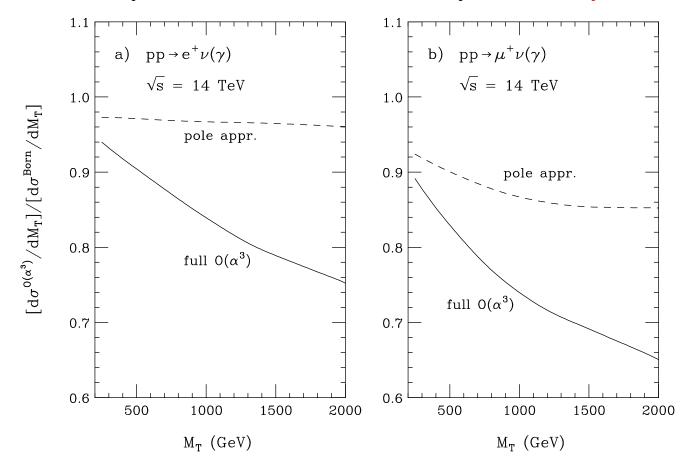
Electroweak Sudakov Logs

• for $\hat{s} \gg M_{W/Z}^2$, the weak corrections become large and negative



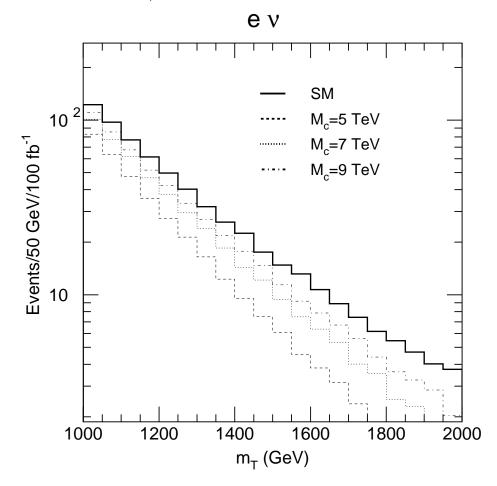
dashed: evaluate weak form factors for $\hat{s} = M_W^2$

- reason: terms $\sim \alpha \log^2(\hat{s}/M_W^2)$ from vertex and box corrections
 - need to resum?
 - certainly for the LHC this is necessary (not done yet)



important for new physics searches:

 $\ensuremath{\text{@}}$ example: KK excitations of W boson: a slight reduction in cross section could signal a heavy KK excitation beyond reach for direct production (Polesello, Prata)



- effect on W width extracted from high M_T tail
 - the non-resonant weak corrections which contain the Sudakov logs have not been taken into account in previous exp. analyses
 - rightharpoonup they change the shape of the M_T distribution
 - \sim performing a χ^2 analysis:

non-resonant weak corrections shift W width by

$$\delta\Gamma_W \approx -7.2 \text{ MeV}$$

 \Leftrightarrow expected exp. precision in Tevatron run2 (2 fb⁻¹, $e + \mu$, CDF+DØ combined):

$$\Delta\Gamma_W \approx 25 - 30 \; \mathrm{MeV}$$

not negligible!

4 – Radiative Corrections to $e^+e^- \rightarrow 4f$

- Measuring M_W at the ILC:
 - rightharpoonup continuum measurement ($\sqrt{s} > 2M_W$):
 - \rightarrow reconstruct W's from decay products (similar to method employed by LEP II exps.)
 - \rightarrow expect to achieve $\delta M_W \approx 10$ MeV for $\int \mathcal{L}dt = 500 \text{ fb}^{-1}$ (uncertainty dominated by systematic uncertainty)
 - threshold scan: $\sqrt{s} \approx 161$ GeV (Wilson, Sitges Workshop) $e^+e^- \to 4$ fermion cross section is sensitive to M_W in threshold region

- the threshold scan under the magnifying glass:
 - statistical uncertainty: (Stirling)

$$\delta M_W^{stat} = 90 \text{ MeV} \left[\frac{\epsilon \int \mathcal{L}dt}{100 \text{ pb}^{-1}} \right]^{-1/2}$$

for $\epsilon = 0.67$ (efficiency) and $\int \mathcal{L}dt = 100 \text{ fb}^{-1}$:

$$\delta M_W^{stat} \approx 3.5 \ \mathrm{MeV}$$

add systematic errors

For a multiplicative factor *C*:

$$\delta M_W^{sys} = 17 \text{ MeV} \left[\frac{\Delta C}{C} \times 100\% \right]$$

assume $\Delta \epsilon \approx 0.25\%$, $\Delta \mathcal{L} \approx 0.1\%$:

$$\delta M_W \approx 6 \text{ MeV}$$

rightharpoonup detailed simulations yield $\delta M_W \approx 7 \text{ MeV (M\"{o}nig)}$

- theoretical uncertainties:
 - riangleq if one wishes to achieve $\delta M_W \approx 7$ MeV, one needs $\delta M_W^{theor} \sim 1$ MeV
 - reed to know cross section in threshold region with

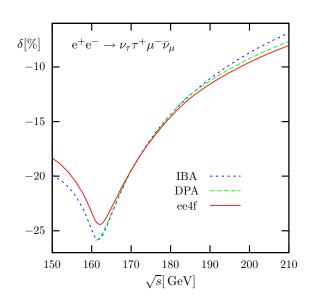
$$\frac{\Delta\sigma}{\sigma} \approx 0.05\%$$

- uncertainty of GENTLE cross section in threshold region (CERN LEP2 Yellow Report):

$$\frac{\Delta\sigma}{\sigma}\approx 1.4\%$$

- rightharpoonup need full $\mathcal{O}(\alpha)$ corrections in threshold region
- rightharpoonup finite W width effects are important in threshold region:
- → must go beyond double pole approximation

- remaining theoretical uncertainties:
- \rightarrow NLL corrections $((\alpha/\pi)^2 \log(m_e^2/s))$: $\mathcal{O}(0.1\%)$
- \rightarrow higher order effects of coulomb singularity: $\sim 0.2\%$ (Fadin et al., Bardin et al.)
- still a way to go to reach goal....



5 – Conclusions

- controlling electroweak radiative corrections is essential for future high precision tests of the SM
- significant progress has been made over the last few years
- a long shopping list of things to do remains:
 - rightharpoonup higher order corrections to M_W and $\sin^2 \theta_{eff}$
 - $\ensuremath{\checkmark}$ higher order EWK corrections to W and Z production in the pole region
 - resummation of EWK Sudakov logs