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Introduction

® Muon decay to electrons and neutrinos occupies a special place in high energy
physics
© VvV — A current; the Fermi theory;

©  Kinoshita-Lee-Nauenberg theorem was conceived as the result of explicit
computation of QED radiative corrections for i — evev,, in particular;

© One of the first complete one-loop calculations in the Standard Model;
© The Fermi coupling constant, G r, is extracted from the muon lifetime
measurements; it is an input parameter for precision electroweak fits.
® Robust experimental program with long history and established tradition.

® Recent highlights

©  Calculation of O(a?) QED corrections to muon life-time within the Fermi
Model Stuart, van Ritbergen

© Ongoing measurements of the muon lifetime at uLAN and FAST experiments
at PSI; the expected precision is 10~° which is a factor of seventeen better
than the current precision.

©  Ongoing measurement of the electron energy spectrum by the TWIST
collaboration. Expected to reach the precision of 10—4.
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Introduction

® The electron energy spectrum in muon decay offers an opportunity to test the
V' — A structure of the charged weak current Michel, Bouchiat

dr’ B G%m
dzdcosf.  4n3

E? .. Bex? (F(x) — P, cos0.G(x))
Fx)=x(1 —x) + gp (43:2 — 3z — 33(2)) + nxo(l — x)

G(az):%f\/aﬂ—xg [1—$+2€5(4$—3—|—\/1—$%—1>:|.

® == F./Emax, Fmax = (m? +m2)/(2m) and p,n, £, § are Michel parameters.
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Introduction

® In the Standard Model , Michel parameters
3 3
= —, =0, =1, 6=-.
=0 0 3 1

The direct consequence of the V' — A structure of weak interactions.

® Current measurements of the electron energy spectra imply

p=0.751(1) n=—0.007(13), &=1.003(84), & =0.749(1);;

any deviation from the Standard Model values implies New Physics.
TWIST collaboration, PDG 2004

® The standard example of New Physics is the left-right symmetric models with
heavy Wg.
Herzceg, Langacker
® If TWIST reaches the expected precision, the bound on the mass of W becomes

competitive with CDF and DO bounds M > 500 — 600 GeV and the bound on the
mixing angle becomes very tight ¢ ~ 102,
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QED corrections

® The description of the electron energy spectrum in muon decay in terms of Michel
parameters is, of course, oversimplified.

® With the precision O(10~%), the QED radiative corrections have to be calculated;
QED corrections change the functional form of dI" /dx and, hence, have to be
subtracted before the fit to extract the Michel parameters is attempted.

® The total decay rate can be computed assuming that electron is massless; this
approximation is invalid for the electron energy spectrum

__ZZ( ) an—efw()

1=0 7=0

® Since In(m/me) =~ 5, radiative corrections are important

« m
— In
T Me

~ 1.2 x 1072,

Computation of O(a?) corrections is required for the interpretation of TWIST
results.
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QED corrections in the logarithmic approximation

® If we are only interested in O(a? In(m/m.)), computations can be simplified using
the so-called perturbative fragmentation function Mele and Nason

® Similar to the familiar concept of fragmentation in QCD, we may write
(2 = E;/Emax) Melnikov and Arbuzov

oy [ LD (2ym).

® The interpretation: “hard process” at distance scales 1/m, followed by soft
fragmentation at distances 1/me.. In the hard process, the dependence on the
electron mass can be neglected.

® In contrast to QCD, the fragmentation function DY is fully computable from first
principles. Similar to QCD, the dependence on the factorization scale is governed
by the QED analog of the DGLAP evolution equation

1
dD¢ (s, x) o dz x
1 J — / sz (—) D]e(,LLf,Z)
dlnpy 21 z z
xr
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QED corrections with the logarithmic accuracy

® In the above formalism, the logarithms of the muon to electron mass ratio reside in
the fragmentation function. Choosing pr = m,

D¢(m, ) = §(1 — z) + — (Pee(a;) In =

27 Me

+Dy@0+m

® The O(a?In(m/m.)) corrections to the electron energy spectrum can easily be
computed provided that

drMs
1. d’ is known through O(«) in the massless approximation ;
X

2. D¢ (x) is known exactly through O(«).

® The results in midpoint of the spectrum are

1. O(a?1n? m/m.) corrections are ~ 7 x 10~4
Arbuzov, Czarnecki, Gaponenko ;

2. O(a?Inm/me) corrections are ~ —3 x 104
Melnikov, Arbuzov .

® Hence, to make full use of the TWIST precision, we require O(«?) corrections
without the In m /m. enhancement.
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QED corrections

® There are two ways to approach the calculation of O(a?) corrections;

® Itis possible to generalize the method based on the fragmentation function. Then
we require
MS
1. dz through O(«?) in the massless approximation
X

2. D¢(z) through O(a?) Melnikov and Mitov .

® The other option is to approach the calculation numerically, using techniques
developed in the context of QCD computations for differential observables
Anastasiou, Melnikov and Petriello .

® We choose to pursue the second option since

1. Itis more flexible; computing dI"/dz is equivalent to computing any differential
distribution for 1 — ev, ve;

2. Extension of the method to massive particles, with potential applications to
heavy quark decay spectra;

3. Interesting to check if m /m = 1/200 is large enough, to permit a stable
numerical evaluation.
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Method: the basics

® Automated, numerical method for extracting and canceling the infra-red
singularities.

© The NNLO decay rate:
d'nnpLo = dl'yvy +dlpy + dlRR.

© For each component, obtain an expansion:

I=0 MAB
E J
dFAB — Ej )
j:jmin

where MJAB are e-independent and integrable throughout the phase-space.

S MjAB can be computed numerically. Poles in e cancel, when all dI" 4 g are
combined.

® In principle, the method deals with the differential cross-sections = arbitrary cuts
on the final states are allowed.

® For the purposes of this talk, | focus on dI'/dz.
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Method: the sketch of the algorithm

® The method applies to VV, RV and RR, with minimal modifications. | focus on RR
since it is where the bottleneck usually is.
®  The algorithm:
© map the differential phase-space onto the unit hypercube:

1 1
/H %W (Pin — Zpi) . = / H da;ja;j_“je(l _ CCj)—bje._.
i i )

© use the “sector decomposition” to disentangle overlapping singularities;
Binoth, Heinrich , Denner, Roth.

©  use “plus-distribution expansion for book-keeping:

1

X

In x
+ X
® The outcome: all the singularities from RR diagrams are extracted without a single
integration.

- :—ié(zr:)—l—

xl—l—ae Q€

_|_
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Method: what changes with massive particles

® For massless particles, the double real emission correction is, usually, the most
difficult to deal with. This changes, if massive particles are involved.

® Convenient parametrization of the phase-space is the key for the efficiency of the
method,; trivially achieved if fermions are massive since only soft, w~, — 0, photons
contribute to the divergencies.

® With massless particles, many two-loop integrals are known analytically. With
massive particles, this is not the case.

® Loops are amenable to sector decomposition.
Binoth, Heinrich , Denner, Roth.

® Dealing with loop integrals for . — evev,, is, in principle, straightforward. It is
possible to deal numerically with the complete diagram at once; neither the
Passarino-Veltman reduction nor the reduction to master integrals is required. Not
quite trivial, but can be worked out.

® We do not use the fact that m. < m; keeping m. arbitrary is good for checks, for
example m. — m limit can be deduced from the known O(«?) corrections to
b — c transitions at zero recoil. We achieve good numerical precision for
me /m ~ 200.
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QED corrections: results

® We write the second order correction to the electron energy spectrum as
fP (@) = £ (@) n? (mu/me) + £32 (@) In(my /me) + 57 ().

® The interesting piece is féQ)(x). Define 5((32) — é2)(a:)/fé0)(a:).

1.0 T { T T T T { T T T T {

0.5

c50(2)><104

0.0

constant

-1.0

® QED corrections not enhanced by the logarithm of the muon to electron mass ratio
are ~ 0.5 x 10~4, i.e. one half of the expected experimental precision.
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QED corrections: results

10

constant

~10 1 ‘ 1 1 1 1 ‘ 1 1 1 1 ‘

® A hierarchy of In’ (m/m.), j = 2..0 corrections exists, but it does not quite follow
the naive expectation.

® The leading In?-enhanced correction is good for estimates within a factor 1.5 — 2 .

® The theory uncertainty in the prediction for the electron energy spectrum is
conservatively estimated to be 5 x 10~° using a2 In®(m/me¢) ~ few x 1076,
hadronic vacuum polarization correction and finite W mass effects.
Arbuzov, Davydichev, Schilcher, Spiesberger
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Conclusions

® First calculation of the energy spectrum of any charged particle through O(«a?); for
n — evevy,, almost half a century after the O(a) corrections to the electron energy
spectrum were obtained.

® O(a?) contribution to the electron energy spectra are in the range —5to 8 x 10~4
depending on the value of x. The largest contribution comes from the
In m/me.-enhanced corrections.

® The remaining theoretical uncertainty on the electron energy spectrum is
estimated to be 5 x 10~°, well below the requirements of the TWIST experiment.

® The calculation | just discussed applies to unpolarized muon decay only; to make
full use of the TWIST measurement, the calculation has to be extended to include
the muon polarization.

® The computational methods developed in the context of this calculation are
applicable to decays of heavy particles (top, Higgs, bottom).
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