Electron energy spectrum in muon decay

Kirill Melnikov

University of Hawaii

Loopfest IV, Snowmass, August 2005

In collaboration with C. Anastasiou and F. Petriello

Outline

- Introduction
- QED corrections with the logarithmic accuracy
- QED corrections beyond the logarithmic accuracy
- Results
- Conclusions

Introduction

- Muon decay to electrons and neutrinos occupies a special place in high energy physics
 - $^{\circ}$ V-A current; the Fermi theory;
 - $^{\circ}$ Kinoshita-Lee-Nauenberg theorem was conceived as the result of explicit computation of QED radiative corrections for $\mu \to e \nu_e \nu_\mu$ in particular;
 - One of the first complete one-loop calculations in the Standard Model;
 - $^{\circ}$ The Fermi coupling constant, G_F , is extracted from the muon lifetime measurements; it is an input parameter for precision electroweak fits.
- Robust experimental program with long history and established tradition.
- Recent highlights
 - $^{\circ}$ Calculation of $\mathcal{O}(\alpha^2)$ QED corrections to muon life-time within the Fermi Model Stuart, van Ritbergen
 - Ongoing measurements of the muon lifetime at μ LAN and FAST experiments at PSI; the expected precision is 10^{-6} which is a factor of <u>seventeen</u> better than the current precision.
 - Ongoing measurement of the electron energy spectrum by the TWIST collaboration. Expected to reach the precision of 10^{-4} .

Introduction

• The electron energy spectrum in muon decay offers an opportunity to test the V-A structure of the charged weak current Michel, Bouchiat

The electron energy spectrum in the decay of polarized muon is given by

$$\frac{d\Gamma}{dx d \cos \theta_e} = \frac{G_F^2 m}{4\pi^3} E_{\text{max}}^5 \beta_e x^2 \left(F(x) - P_\mu \cos \theta_e G(x) \right)$$

$$F(x) = x(1-x) + \frac{2}{9} \rho \left(4x^2 - 3x - x_0^2 \right) + \eta x_0 (1-x)$$

$$G(x) = \frac{1}{3} \xi \sqrt{x^2 - x_0^2} \left[1 - x + \frac{2\delta}{3} \left(4x - 3 + \sqrt{1 - x_0^2} - 1 \right) \right].$$

• $x=E_e/E_{
m max}$, $E_{
m max}=(m^2+m_e^2)/(2m)$ and ho,η,ξ,δ are Michel parameters.

Introduction

In the Standard Model, Michel parameters

$$\rho = \frac{3}{4}, \quad \eta = 0, \quad \xi = 1, \quad \delta = \frac{3}{4}.$$

The direct consequence of the V-A structure of weak interactions.

Current measurements of the electron energy spectra imply

$$\underline{\rho = 0.751(1)}$$
 $\eta = -0.007(13), \quad \xi = 1.003(84), \quad \underline{\delta = 0.749(1)};$

any deviation from the Standard Model values implies New Physics.

TWIST collaboration, PDG 2004

• The standard example of New Physics is the left-right symmetric models with heavy W_R .

Herzceg, Langacker

If TWIST reaches the expected precision, the bound on the mass of W_R becomes competitive with CDF and D0 bounds $M \geq 500-600~{\rm GeV}$ and the bound on the mixing angle becomes very tight $\zeta \sim 10^{-2}$.

QED corrections

- The description of the electron energy spectrum in muon decay in terms of Michel parameters is, of course, oversimplified.
- With the precision $\mathcal{O}(10^{-4})$, the QED radiative corrections have to be calculated; QED corrections change the functional form of $\mathrm{d}\Gamma/\mathrm{d}x$ and, hence, have to be subtracted before the fit to extract the Michel parameters is attempted.
- The total decay rate can be computed assuming that electron is massless; this
 approximation is invalid for the electron energy spectrum

$$\frac{\mathrm{d}\Gamma}{\mathrm{d}x} = \sum_{i=0}^{\infty} \sum_{j=0}^{i} \left(\frac{\alpha}{\pi}\right)^{i} \ln^{j} \frac{m}{m_{e}} f_{ij}(x).$$

• Since $\ln(m/m_e) \approx 5$, radiative corrections are important

$$\frac{\alpha}{\pi} \ln \frac{m}{m_e} \approx 1.2 \times 10^{-2}.$$

Computation of $\mathcal{O}(\alpha^2)$ corrections is required for the interpretation of TWIST results.

QED corrections in the logarithmic approximation

- If we are only interested in $\mathcal{O}(\alpha^2 \ln(m/m_e))$, computations can be simplified using the so-called perturbative fragmentation function

 Mele and Nason
- Similar to the familiar concept of fragmentation in QCD, we may write $(z=E_j/E_{
 m max})$ Melnikov and Arbuzov

$$\frac{\mathrm{d}\Gamma}{\mathrm{d}x} = \sum_{j} \int_{x}^{1} \frac{\mathrm{d}z}{z} \frac{\mathrm{d}\Gamma_{i}^{\overline{\mathrm{MS}}}(\mu_{f}, z)}{\mathrm{d}z} D_{i}^{e} \left(\frac{x}{z}, \mu_{f}, m\right).$$

- The interpretation: "hard process" at distance scales 1/m, followed by soft fragmentation at distances $1/m_e$. In the hard process, the dependence on the electron mass can be neglected.
- In contrast to QCD, the fragmentation function D_i^e is fully computable from first principles. Similar to QCD, the dependence on the factorization scale is governed by the QED analog of the DGLAP evolution equation

$$\frac{\mathrm{d}D_i^e(\mu_f, x)}{\mathrm{d}\ln \mu_f} = \frac{\alpha}{2\pi} \int_x^1 \frac{\mathrm{d}z}{z} P_{ij} \left(\frac{x}{z}\right) D_j^e(\mu_f, z).$$

QED corrections with the logarithmic accuracy

In the above formalism, the logarithms of the muon to electron mass ratio reside in the fragmentation function. Choosing $\mu_f = m$,

$$D_e^e(m,x) = \delta(1-x) + \frac{\alpha}{2\pi} \left(P_{ee}(x) \ln \frac{m}{m_e} + D_e^{e,1}(x) \right) + \dots$$

- The $\mathcal{O}(\alpha^2 \ln(m/m_e))$ corrections to the electron energy spectrum can easily be computed provided that
 - 1. $\frac{\mathrm{d}\Gamma_i^{\overline{\mathrm{MS}}}}{\mathrm{d}x}$ is known through $\mathcal{O}(\alpha)$ in the massless approximation ;
 - 2. $D_i^e(x)$ is known exactly through $\mathcal{O}(\alpha)$.
- The results in midpoint of the spectrum are
 - 1. $\mathcal{O}(\alpha^2 \ln^2 m/m_e)$ corrections are $\sim 7 \times 10^{-4}$

Arbuzov, Czarnecki, Gaponenko;

2. $\mathcal{O}(\alpha^2 \ln m/m_e)$ corrections are $\sim -3 \times 10^{-4}$

Melnikov, Arbuzov.

• Hence, to make full use of the TWIST precision, we require $\mathcal{O}(\alpha^2)$ corrections without the $\ln m/m_e$ enhancement.

QED corrections

- There are two ways to approach the calculation of $\mathcal{O}(\alpha^2)$ corrections;
- It is possible to generalize the method based on the fragmentation function. Then
 we require
 - 1. $\frac{\mathrm{d}\Gamma_i^{\overline{\mathrm{MS}}}}{\mathrm{d}x}$ through $\mathcal{O}(\alpha^2)$ in the massless approximation
 - 2. $D^e(x)$ through $\mathcal{O}(\alpha^2)$

Melnikov and Mitov.

- The other option is to approach the calculation <u>numerically</u>, using techniques developed in the context of QCD computations for differential observables
 Anastasiou, Melnikov and Petriello .
- We choose to pursue the second option since
 - 1. It is more flexible; computing $d\Gamma/dz$ is equivalent to computing any differential distribution for $\mu \to e\nu_{\mu}\nu_{e}$;
 - 2. Extension of the method to massive particles, with potential applications to heavy quark decay spectra;
 - 3. Interesting to check if $m_e/m \approx 1/200$ is large enough, to permit a stable numerical evaluation.

Method: the basics

- Automated, numerical method for extracting and canceling the infra-red singularities.
 - The NNLO decay rate:

$$d\Gamma_{\text{NNLO}} = d\Gamma_{VV} + d\Gamma_{RV} + d\Gamma_{RR}.$$

For each component, obtain an expansion:

$$d\Gamma_{AB} = \sum_{j=j_{\min}}^{j=0} \frac{M_j^{AB}}{\epsilon^j},$$

where M_j^{AB} are ϵ -independent and integrable throughout the phase-space.

- $^{\circ}$ M_{j}^{AB} can be computed numerically. Poles in ϵ cancel, when all $\mathrm{d}\Gamma_{AB}$ are combined.
- In principle, the method deals with the differential cross-sections ⇒ arbitrary cuts
 on the final states are allowed.
- For the purposes of this talk, I focus on $d\Gamma/dx$.

Method: the sketch of the algorithm

- The method applies to VV, RV and RR, with minimal modifications. I focus on RR since it is where the bottleneck usually is.
- The algorithm:
 - map the differential phase-space onto the unit hypercube:

$$\int \prod_{i} \frac{\mathrm{d}p_{i}^{-1}}{2p_{i}^{0}} \delta^{d} \left(P_{\mathrm{in}} - \sum_{i} p_{i} \right) \dots \Rightarrow \int_{0}^{1} \prod_{j} \mathrm{d}x_{j} x_{j}^{-a_{j} \epsilon} (1 - x_{j})^{-b_{j} \epsilon} \dots$$

- use the "sector decomposition" to disentangle overlapping singularities;
 Binoth, Heinrich, Denner, Roth.
- use "plus"-distribution expansion for book-keeping:

$$\frac{1}{x^{1+a\epsilon}} = -\frac{1}{a\epsilon}\delta(x) + \left[\frac{1}{x}\right]_{+} - a\epsilon \left[\frac{\ln x}{x}\right]_{+} + \dots$$

 The outcome: all the singularities from RR diagrams are extracted without a single integration.

Method: what changes with massive particles

- For massless particles, the double real emission correction is, usually, the most difficult to deal with. This changes, if massive particles are involved.
- Convenient parametrization of the phase-space is the key for the efficiency of the method; trivially achieved if fermions are massive since only soft, $\omega_{\gamma} \to 0$, photons contribute to the divergencies.
- With massless particles, many two-loop integrals are known analytically. With massive particles, this is not the case.
- Loops are amenable to sector decomposition.

Binoth, Heinrich, Denner, Roth.

- Dealing with loop integrals for $\mu \to e \nu_e \nu_\mu$ is, in principle, straightforward. It is possible to deal numerically with the complete diagram at once; neither the Passarino-Veltman reduction nor the reduction to master integrals is required. Not quite trivial, but can be worked out.
- We do not use the fact that $m_e \ll m$; keeping m_e arbitrary is good for checks, for example $m_e \to m$ limit can be deduced from the known $\mathcal{O}(\alpha_s^2)$ corrections to $b \to c$ transitions at zero recoil. We achieve good numerical precision for $m_e/m \approx 200$.

QED corrections: results

We write the second order correction to the electron energy spectrum as

$$f^{(2)}(x) = f_2^{(2)}(x) \ln^2(m_\mu/m_e) + f_2^{(2)}(x) \ln(m_\mu/m_e) + f_0^{(2)}(x).$$

• The interesting piece is $f_0^{(2)}(x)$. Define $\delta_0^{(2)} = f_0^{(2)}(x)/f_0^{(0)}(x)$.

• QED corrections not enhanced by the logarithm of the muon to electron mass ratio are $\sim 0.5 \times 10^{-4}$, i.e. one half of the expected experimental precision.

QED corrections: results

- A hierarchy of $\ln^j(m/m_e)$, j=2..0 corrections exists, but it does not quite follow the naive expectation.
- The leading \ln^2 -enhanced correction is good for estimates within a factor 1.5-2 .
- The theory uncertainty in the prediction for the electron energy spectrum is conservatively estimated to be 5×10^{-6} using $\alpha^3 \ln^3(m/m_e) \sim \text{few} \times 10^{-6}$, hadronic vacuum polarization correction and finite W mass effects.

Arbuzov, Davydichev, Schilcher, Spiesberger

Conclusions

- First calculation of the energy spectrum of any charged particle through $\mathcal{O}(\alpha^2)$; for $\mu \to e \nu_e \nu_\mu$, almost half a century after the $\mathcal{O}(\alpha)$ corrections to the electron energy spectrum were obtained.
- $\mathcal{O}(\alpha^2)$ contribution to the electron energy spectra are in the range -5 to 8×10^{-4} depending on the value of x. The largest contribution comes from the $\ln m/m_e$ -enhanced corrections.
- The remaining theoretical uncertainty on the electron energy spectrum is estimated to be 5×10^{-6} , well below the requirements of the TWIST experiment.
- The calculation I just discussed applies to unpolarized muon decay only; to make full use of the TWIST measurement, the calculation has to be extended to include the muon polarization.
- The computational methods developed in the context of this calculation are applicable to decays of heavy particles (top, Higgs, bottom).