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Introduction

• Muon decay to electrons and neutrinos occupies a special place in high energy
physics
◦ V − A current; the Fermi theory;
◦ Kinoshita-Lee-Nauenberg theorem was conceived as the result of explicit

computation of QED radiative corrections for µ → eνeνµ in particular;
◦ One of the first complete one-loop calculations in the Standard Model;
◦ The Fermi coupling constant, GF , is extracted from the muon lifetime

measurements; it is an input parameter for precision electroweak fits.

• Robust experimental program with long history and established tradition.

• Recent highlights
◦ Calculation of O(α2) QED corrections to muon life-time within the Fermi

Model Stuart, van Ritbergen
◦ Ongoing measurements of the muon lifetime at µLAN and FAST experiments

at PSI; the expected precision is 10−6 which is a factor of seventeen better
than the current precision.

◦ Ongoing measurement of the electron energy spectrum by the TWIST
collaboration. Expected to reach the precision of 10−4.
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Introduction

• The electron energy spectrum in muon decay offers an opportunity to test the
V − A structure of the charged weak current Michel, Bouchiat
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• The electron energy spectrum in the decay of polarized muon is given by
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• x = Ee/Emax, Emax = (m2 + m2
e)/(2m) and ρ, η, ξ, δ are Michel parameters.
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Introduction

• In the Standard Model , Michel parameters

ρ =
3

4
, η = 0, ξ = 1, δ =

3

4
.

The direct consequence of the V − A structure of weak interactions.

• Current measurements of the electron energy spectra imply

ρ = 0.751(1) η = −0.007(13), ξ = 1.003(84), δ = 0.749(1); ;

any deviation from the Standard Model values implies New Physics.
TWIST collaboration, PDG 2004

• The standard example of New Physics is the left-right symmetric models with
heavy WR.

Herzceg, Langacker

• If TWIST reaches the expected precision, the bound on the mass of WR becomes
competitive with CDF and D0 bounds M ≥ 500 − 600 GeV and the bound on the
mixing angle becomes very tight ζ ∼ 10−2.
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QED corrections

• The description of the electron energy spectrum in muon decay in terms of Michel
parameters is, of course, oversimplified.

• With the precision O(10−4), the QED radiative corrections have to be calculated;
QED corrections change the functional form of dΓ/dx and, hence, have to be
subtracted before the fit to extract the Michel parameters is attempted.

• The total decay rate can be computed assuming that electron is massless; this
approximation is invalid for the electron energy spectrum

dΓ

dx
=

∞
∑

i=0

i
∑

j=0

( α

π

)i
lnj m

me

fij(x).

• Since ln(m/me) ≈ 5, radiative corrections are important

α

π
ln

m

me

≈ 1.2 × 10−2.

Computation of O(α2) corrections is required for the interpretation of TWIST
results.
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QED corrections in the logarithmic approximation

• If we are only interested in O(α2 ln(m/me)), computations can be simplified using
the so-called perturbative fragmentation function Mele and Nason

• Similar to the familiar concept of fragmentation in QCD, we may write
(z = Ej/Emax) Melnikov and Arbuzov
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z
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.

• The interpretation: “hard process” at distance scales 1/m, followed by soft
fragmentation at distances 1/me. In the hard process, the dependence on the
electron mass can be neglected.

• In contrast to QCD, the fragmentation function De
i is fully computable from first

principles. Similar to QCD, the dependence on the factorization scale is governed
by the QED analog of the DGLAP evolution equation

dDe
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Electron energy spectrum in muon decay – p.7/15



QED corrections with the logarithmic accuracy

• In the above formalism, the logarithms of the muon to electron mass ratio reside in
the fragmentation function. Choosing µf = m,

De
e(m, x) = δ(1 − x) +

α

2π

(

Pee(x) ln
m

me

+ De,1
e (x)

)

+ ...

• The O(α2 ln(m/me)) corrections to the electron energy spectrum can easily be
computed provided that

1.
dΓMS

i

dx
is known through O(α) in the massless approximation ;

2. De
i (x) is known exactly through O(α).

• The results in midpoint of the spectrum are

1. O(α2 ln2 m/me) corrections are ∼ 7 × 10−4

Arbuzov, Czarnecki, Gaponenko ;

2. O(α2 ln m/me) corrections are ∼ −3 × 10−4

Melnikov, Arbuzov .

• Hence, to make full use of the TWIST precision, we require O(α2) corrections
without the ln m/me enhancement.
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QED corrections

• There are two ways to approach the calculation of O(α2) corrections;

• It is possible to generalize the method based on the fragmentation function. Then
we require

1.
dΓMS

i

dx
through O(α2) in the massless approximation

2. De(x) through O(α2) Melnikov and Mitov .

• The other option is to approach the calculation numerically, using techniques
developed in the context of QCD computations for differential observables

Anastasiou, Melnikov and Petriello .

• We choose to pursue the second option since

1. It is more flexible; computing dΓ/dz is equivalent to computing any differential
distribution for µ → eνµνe;

2. Extension of the method to massive particles, with potential applications to
heavy quark decay spectra;

3. Interesting to check if me/m ≈ 1/200 is large enough, to permit a stable
numerical evaluation.
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Method: the basics

• Automated, numerical method for extracting and canceling the infra-red
singularities.

◦ The NNLO decay rate:

dΓNNLO = dΓV V + dΓRV + dΓRR.

◦ For each component, obtain an expansion:

dΓAB =

j=0
∑

j=jmin

MAB
j

εj
,

where MAB
j are ε-independent and integrable throughout the phase-space.

◦ MAB
j can be computed numerically. Poles in ε cancel, when all dΓAB are

combined.

• In principle, the method deals with the differential cross-sections ⇒ arbitrary cuts
on the final states are allowed.

• For the purposes of this talk, I focus on dΓ/dx.
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Method: the sketch of the algorithm

• The method applies to VV, RV and RR, with minimal modifications. I focus on RR
since it is where the bottleneck usually is.

• The algorithm:
◦ map the differential phase-space onto the unit hypercube:

∫

∏
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.... ⇒
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◦ use the “sector decomposition” to disentangle overlapping singularities;
Binoth, Heinrich , Denner, Roth.

◦ use “plus”-distribution expansion for book-keeping:

1
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1
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[
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+
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• The outcome: all the singularities from RR diagrams are extracted without a single
integration.
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Method: what changes with massive particles

• For massless particles, the double real emission correction is, usually, the most
difficult to deal with. This changes, if massive particles are involved.

• Convenient parametrization of the phase-space is the key for the efficiency of the
method; trivially achieved if fermions are massive since only soft, ωγ → 0, photons
contribute to the divergencies.

• With massless particles, many two-loop integrals are known analytically. With
massive particles, this is not the case.

• Loops are amenable to sector decomposition.
Binoth, Heinrich , Denner, Roth.

• Dealing with loop integrals for µ → eνeνµ is, in principle, straightforward. It is
possible to deal numerically with the complete diagram at once; neither the
Passarino-Veltman reduction nor the reduction to master integrals is required. Not
quite trivial, but can be worked out.

• We do not use the fact that me � m; keeping me arbitrary is good for checks, for
example me → m limit can be deduced from the known O(α2

s) corrections to
b → c transitions at zero recoil. We achieve good numerical precision for
me/m ≈ 200.
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QED corrections: results

• We write the second order correction to the electron energy spectrum as

f(2)(x) = f
(2)
2 (x) ln2(mµ/me) + f

(2)
2 (x) ln(mµ/me) + f

(2)
0 (x).

• The interesting piece is f
(2)
0 (x). Define δ

(2)
0 = f

(2)
0 (x)/f

(0)
0 (x).

• QED corrections not enhanced by the logarithm of the muon to electron mass ratio
are ∼ 0.5 × 10−4, i.e. one half of the expected experimental precision.
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QED corrections: results

• A hierarchy of lnj(m/me), j = 2..0 corrections exists, but it does not quite follow
the naive expectation.

• The leading ln2-enhanced correction is good for estimates within a factor 1.5 − 2 .

• The theory uncertainty in the prediction for the electron energy spectrum is
conservatively estimated to be 5 × 10−6 using α3 ln3(m/me) ∼ few × 10−6,
hadronic vacuum polarization correction and finite W mass effects.

Arbuzov, Davydichev, Schilcher, Spiesberger
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Conclusions

• First calculation of the energy spectrum of any charged particle through O(α2); for
µ → eνeνµ, almost half a century after the O(α) corrections to the electron energy
spectrum were obtained.

• O(α2) contribution to the electron energy spectra are in the range −5 to 8 × 10−4

depending on the value of x. The largest contribution comes from the
ln m/me-enhanced corrections.

• The remaining theoretical uncertainty on the electron energy spectrum is
estimated to be 5 × 10−6, well below the requirements of the TWIST experiment.

• The calculation I just discussed applies to unpolarized muon decay only; to make
full use of the TWIST measurement, the calculation has to be extended to include
the muon polarization.

• The computational methods developed in the context of this calculation are
applicable to decays of heavy particles (top, Higgs, bottom).
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