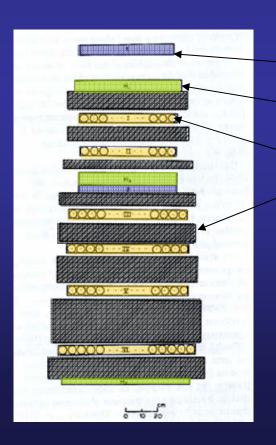

Particle Flow Algorithms

José Repond Argonne National Laboratory

Snowmass Workshop, August 14 – 27, 2005

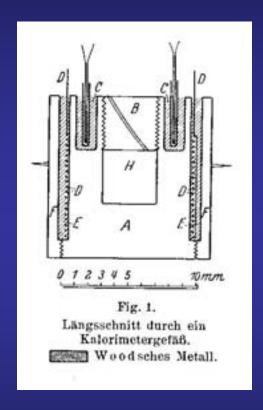

Historical milestones for particle physics

Based on K.Pretzl's CALOR'02 review talk

1930

First calorimetric measurement

Mean energy of continuous β spectrum from ²¹⁰Bi L. Meitner and W. Orthmann Zeitschrift für Physik 60 (1930) 143



Telescope counters

Hodoscopes

Ionization chambers

Absorber (Iron)

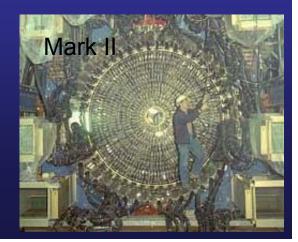
1954

First sandwich calorimeter

Measure cosmic rays with E > 10¹⁴ eV N.L. Grigorov et al. Zh.Exsp.Teor.Fiz. 34(1954) 506 Calorimetry

1968 First total absorption calorimeter

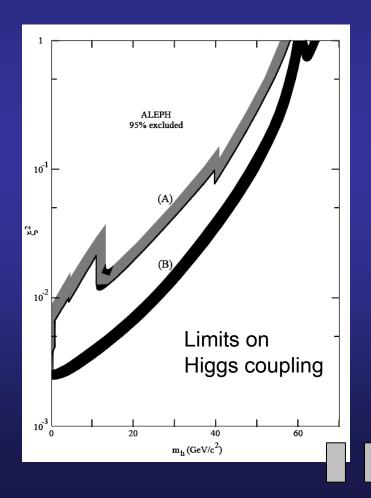
Using large NaI(TI) or CsI Crystals for π^0 spectroscopy E.B.Hughes et al., IEEE:NS 17 (1970) 14

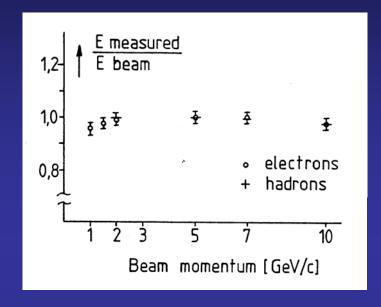

First hadron calorimeter

~1970

GARGAMELLE (bubble chamber) at CERN with 5 $\lambda_{\rm I}$ Discovery of neutral currents

1980's First 4π calorimeters at colliders


SPEAR, PETRA, PEP, SppS...



Calorimetry

1982 First compensating calorimeter with e/h ~ 1

Axial field spectrometer at the ISR H.Gordon et al., NIM 196 (1982) 303

First application of Energy Flow Algorithms

ALEPH detector searching for Higgs

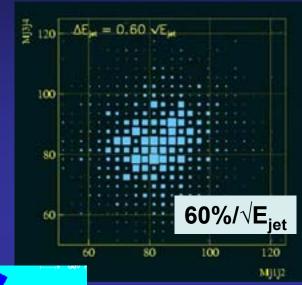
Now: Particle Flow Algorithms

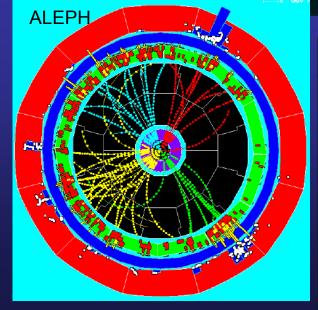
Measuring WW and Z⁰Z⁰

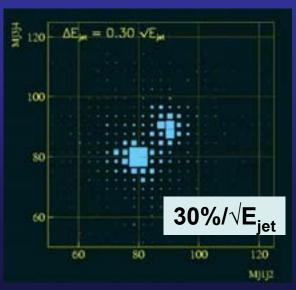
Many final states involve WW or ZZ pairs

 $e^+e^- o WW \upsilon \upsilon$ or $e^+e^- o ZZ \upsilon \upsilon$

Hadronic decay of W or Z


Branching ratio ~ 70%
Results in two hadronic jets


Requires excellent

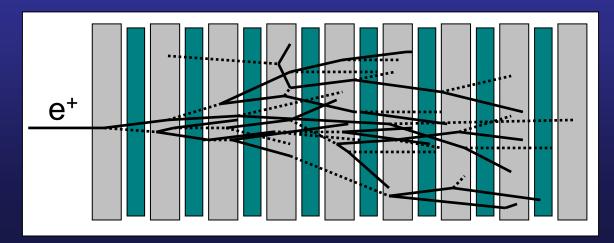

Jet Energy Resolution

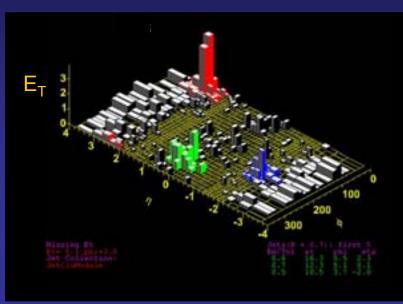
to resolve

 $\Delta m_{Z-W} = 9.76 \text{ GeV}$

Traditional Jet Measurement

Uses calorimeter alone


→ Example of CDF live event


Sandwich design

Used by most calorimeters at colliders

→ Alternating layers of

Absorber plates to incite shower and Active medium (detector) counting charged particles traversing it

$$E_{e^+} \propto \sum N_i$$

Traditional jet measurement

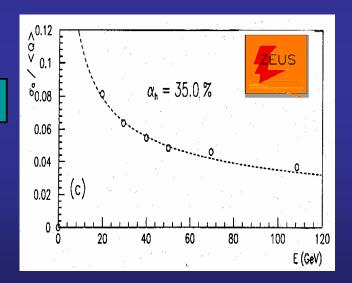
Calorimeter measures photons and hadrons in jet

Typically with different response: e/h ≠ 1 Leads to poor jet energy resolution of > 100%/√E_{jet}

ZEUS tuned

Scintillator and Uranium thickness to achieve e/h ~ 1

→ Best single hadron energy resolution ever


35%/√E

50%/√E Jet Energy Resolution

At the Linear Collider

Goal of

$$\sigma/E_{jet} = 30\%/\sqrt{E_{jet}}$$

New approach

Need new approach

Particle Flow Algorithms

Charged particles

| Meutral particles | measured with the | Calorimeter |

Particles in jets	Fraction of energy	Measured with	Resolution [σ²]	
Charged	65 %	Tracker	Negligible	
Photons	25 %	ECAL with 15%/√E	0.07 ² E _{jet}	} 18%/√E
Neutral Hadrons	10 %	ECAL + HCAL with 50%/√E	0.16 ² E _{jet}	
Confusion	Required	for 30%/√E	≤ 0.24 ² E _{jet}	

HCAL

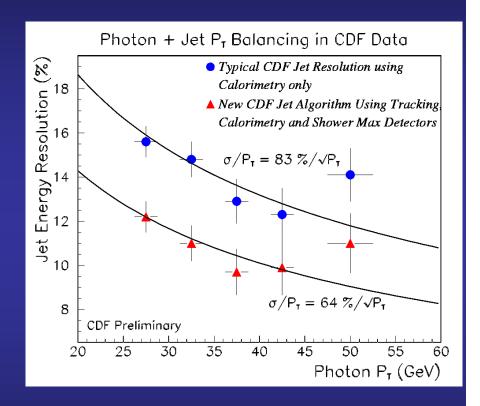
ECAI

Figure of merit BR_I²

Requirements on detector

- → Need excellent tracker and high B field
- \rightarrow Large R_I of calorimeter
- → Calorimeter inside coil
- → Calorimeter with extremely fine segmentation

Do they work?


Applied to existing detectors

ALEPH, CDF, ZEUS...

→ Significantly improved resolution

YES! But that is not the issue...

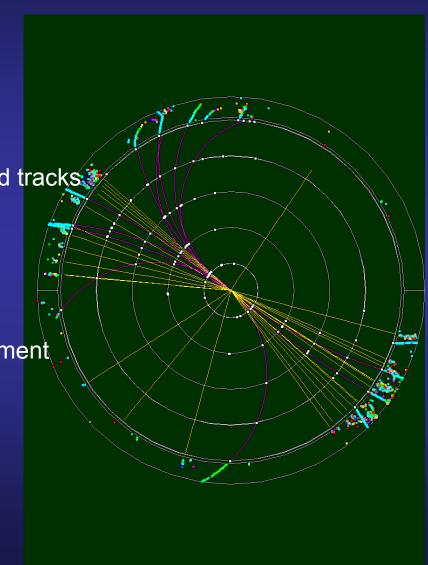
Goal for the Linear Collider Detector

Design a detector optimized for the application of PFAs

Huge simulation effort underway

→ England, France, Germany, Argonne, Iowa, Kansas, NIU, SLAC...

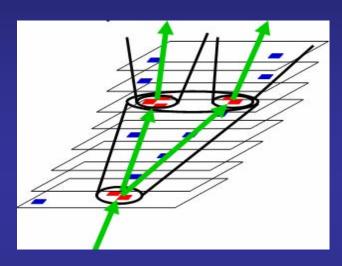
Ingredients of PFAs


I Clustering of calorimeter hits

II Matching of clusters with charged tracks

III Photon finder

IV Neutral hadron energy measurement


V Special tasks

Clustering of calorimeter hits

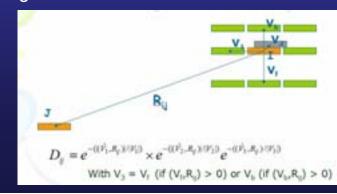
Tubes (Kuhlmann, Magill)

Adding hits in cones originating at high density points Tuned cone size

Cone algorithm (Yu)

Using maximum density cells as centroids Add hits (energy) in cones

Layer – by – layer (Ainsley)


Minimizing distance between hits in adjacent layers Tracking algorithm

Directed tree (NIU)

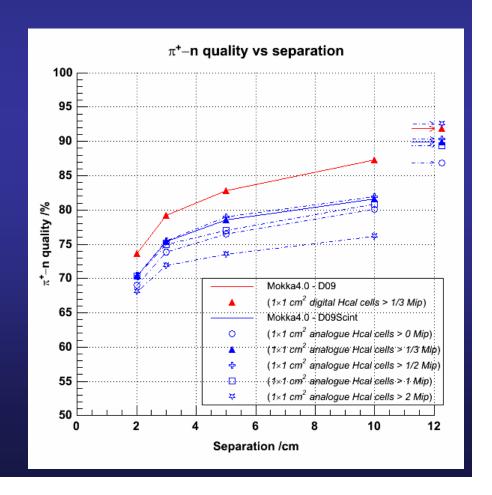
Calculate density differences for pairs of cells
Use maximum density difference to either start new cluster or merge cells

Density weighted (Xia)

Defined geometry independent density function Seeds are cells with highest density Cluster hits with densities above a given cut

Clustering of calorimeter hits

Criteria for performance


Efficiency (find all hits belonging to a given particle)
Purity (reject hits not associated with a given particle)

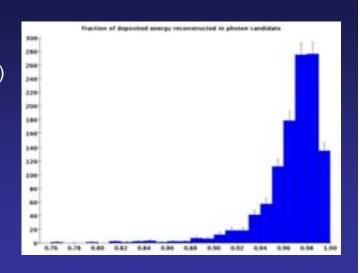
Example from Ainsley

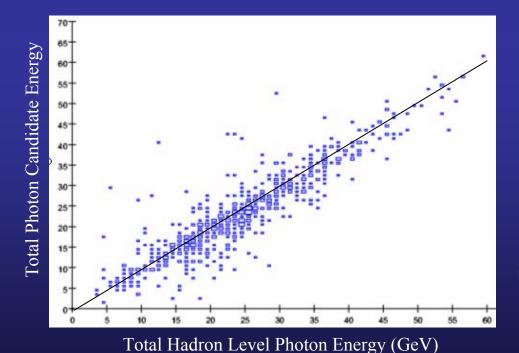
5 GeV $(\pi^+ n)$ event at a distance of 5 cm

Distribution of event energy [%]	True cluster ID	
Reconstructed cluster ID	7.4	40.1
	46.3	6.1

Quality = Fraction of event energy that maps in a 1:1 ratio between true and reconstructed clusters

Photon finders


Using Minimum Spanning Tree clustering (lowa)


Evaluation of Number of hits in cluster

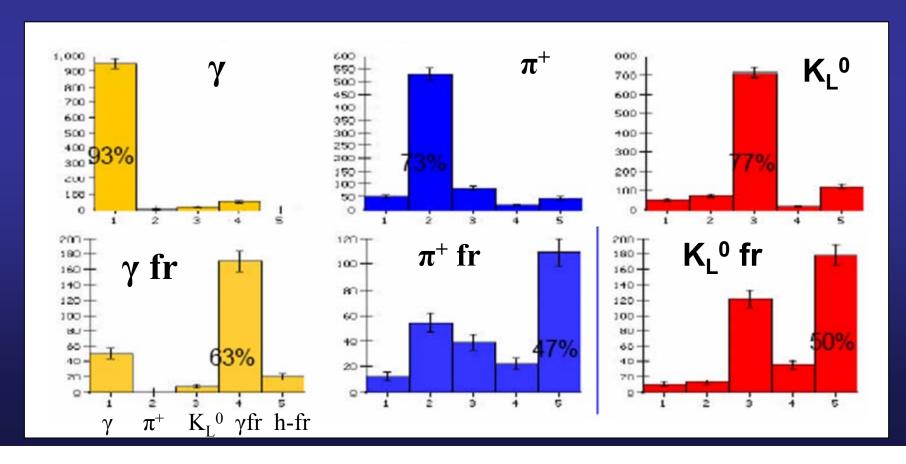
Distance to closest MIP track Eigenvalue of energy tensors

Performance 99% γ efficiency with 5% π^+ contamination

Good energy reconstruction

Using HMatrix (Graf, Wilson)

Using Cones (Kuhlmann, Magill)


Cuts on Distance to charged tracks
Location of shower maximum

Example using Neural Nets (Bower, Cassell)

Calculates energy tensor of clusters Neural net separates into

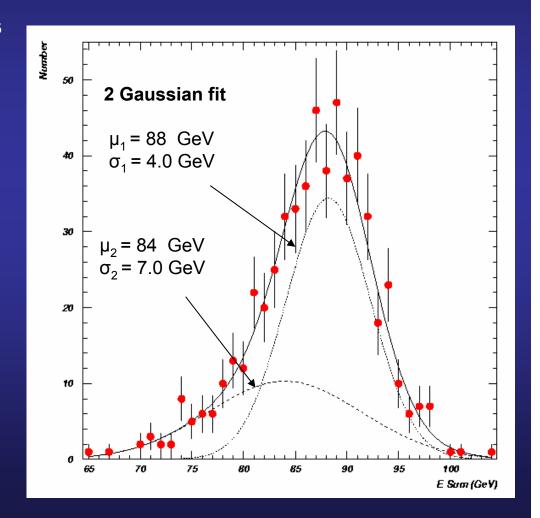
EM clusters
Neutral hadronic
Charged hadronic
EM fragment
Hadronic fragment

Putting it all together

First Results

Applied to $e^+e^- \rightarrow Z^0 \rightarrow q \ \overline{q}$ events

Two Gaussian fit


Jet Energy Resolution still factor 2 from goal

Future improvements to

- Tube algorithm
- Photon finding
- Neutral hadron energy measurement

(before being useful for detector design)

Calorimeter Developments

Requirements for the LCD

Highly segmented readout

Layer – by – layer longitudinally $O(1 \text{ cm}^2)$ laterally

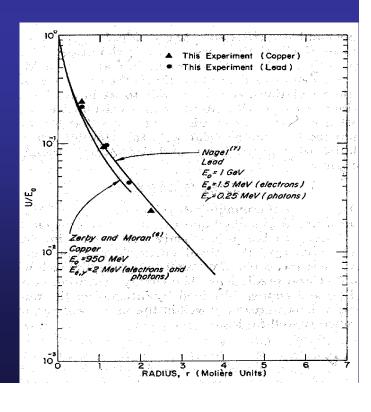
Compact design

Short radiation length X_0 for ECAL Short interaction length λ_I for HCAL Minimal Molière radius R_M

Molière Radius

Definition $R_M = X_0 E_S / E_C$

with X₀ ... Radiation length


Electron looses all but 1/e of its energy by Bremsstrahlung Scale for longitudinal development of EM showers

E_S ... Scaled energy = 21 MeV

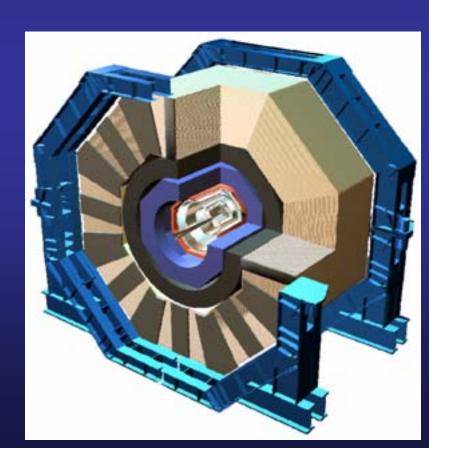
E_c ... Critical energy

Energy where shower development dies

Meaning 90% of energy contained in cylinder with $R = R_M$

Concept of the SiD Calorimeter

- 1) Located inside the coil
- 2) Finest readout segmentation possible


In ECAL of order 0.2 cm²
In HCAL of order 1.0 x 1.0 cm² } laterally Layer – by – layer longitudinally

3) Thinnest possible active detectors

Minimize R_{Moliere,} and cost In ECAL of order 1 – 2 mm In HCAL of order 5 – 10 mm

4) Absorber

Tungsten in ECAL ($R_{Moliere} \sim 9 \text{ mm}$) Steel (default) or Tungsten in HCAL

Technical Realization: ECAL

Ray's preferred structure

 $20 \times 5/7 X_0 + 10 \times 10/7 X_0$ corresponding to 29 X₀

Silicon – Tungsten Sandwich

$$30 \ x \left\{ \begin{array}{l} \text{Tungsten} \\ \text{G10} \\ \text{Silicon} \\ \text{Air} \end{array} \right.$$

0.250 cm 0.068 cm 0.032 cm 0.025 cm

corresponds to 5/7 X₀

R_{Moliere} ~ 14 mm

0.375 cm

Overall thickness

$$\sim 22 \text{ X}_0 \text{ or } \sim 0.8 \text{ } \lambda_1$$

Barrel

$$R_1 = 127 \text{ cm} \rightarrow R_0 = 138.25 \text{ cm}$$

-179.5 cm < z < +179.5 cm

Endcaps

$$z_1 = 168 \text{ cm} \rightarrow z_0 = 179.25 \text{ cm}$$

20 cm < R < 125 cm

Readout segmentation

~ 0.16 cm²

Single electron resolution

~16%/√E

Technical Realization: HCAL

RPC - Steel Sandwich

2.80 cm

Overall thickness

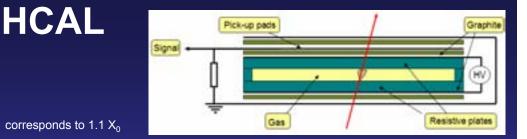
$$\sim 45 X_0 \text{ or } \sim 4.1 \lambda_1$$

Barrel

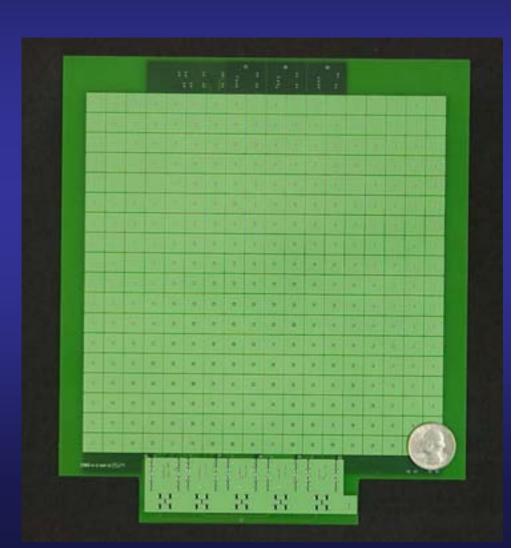
$$R_1 = 138.5 \text{ cm} \rightarrow R_0 = 233.7 \text{ cm}$$

-277 cm < z < +277 cm

Endcaps


$$z_1 = 179.5 \text{ cm} \rightarrow z_0 = 274.7 \text{ cm}$$

20 cm < R < 138.25 cm


Readout segmentation

1.0 x 1.0 cm² ...is this the default now?

Single π^+ resolution

55 – 65 %/√E

Choices for HCAL active media

	Scintillator	GEMs	RPCs	
Technology	Proven (SiPM?)	Relatively new	Relatively old	
Electronic readout	Analog (multi-bit) or Semi-digital (few-bit)	Digital (single-bit)	Digital (single-bit)	
Thickness (total)	~ 8mm	~8 mm	~ 8 mm	
Segmentation	3 x 3 cm ²	1 x 1 cm ²	1 x 1 cm ²	
Pad multiplicity for MIPs	Small cross talk	Measured at 1.27	Measured at 1.6	
Sensitivity to neutrons (low energy)	Yes	Negligible	Negligible	
Recharging time	Fast	Fast?	Slow (20 ms/cm ²)	
Reliability	Proven	Sensitive	Proven (glass)	
Calibration	Challenge	Depends on efficiency	Not a concern (high efficiency)	
Assembly	Labor intensive	Relatively straight forward	Simple	
Cost	Not cheap (SiPM?)	Expensive foils	Cheap	

Fine Tuning of the Calorimeter Design

Many design parameters to adjust

Overall Inner radius of calorimeter

Outer radius of calorimeter

Transition from barrel to endcaps

Transition from endcaps to very forward calorimeters

ECAL Absorber thickness (uniform, varying with depth)

Number of layers

Segmentation of readout

HCAL Absorber choice \rightarrow Tungsten (2 X_0) versus steel (1 X_0)

Number of layers

Active medium (RPC, GEM, Scintillator)

Segmentation of readout

Resolution of readout (number of bits)

Tail catcher Needed?

Same technology as HCAL

Need reasonably well performing PFA to evaluate different designs

Reasonably well performing PFA

Jet energy resolution of 40%/√E or better

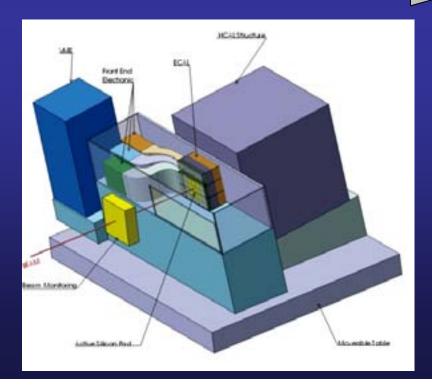
Test with $e^+e^- \rightarrow W^+W^-$ at $\sqrt{s} = 500$ GeV Reconstruct W mass with $\Gamma \le 4$ GeV

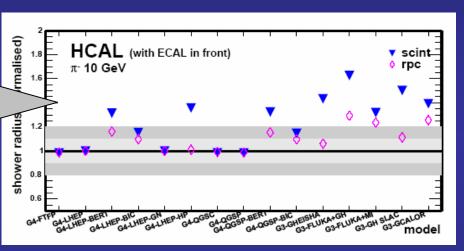
Allowed tricks (at the moment)

Use of MC truth for track parameters
Cut on event axis to be within 55 degrees of normal
Eliminate events with significant energy in neutrinos
Use of code by other developers

Reward for 1st person/group to achieve goal

Several bottles of champagne (John, José, Harry)

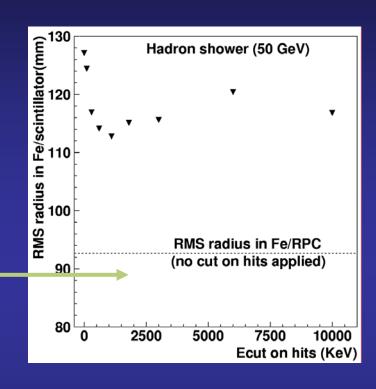

Problem I: Can we trust GEANT4?


Tuning of detector relies on

PFAs and a Realistic simulation of hadronic showers

Comparison of various models

Differences up to 60%



Plot by G Mavromanolakis

Measurements with fine granularity prototype calorimeters absolutely mandatory

Problem II: Sensitivity to slow neutrons?

	Scintillator	RPC Gas
Molecule	C ₆ H ₅ CH=CH ₂	C ₂ H ₂ F ₄
Density	1.032 g /cm ³	4.3 x 10 ⁻³ g/cm ³
Thickness	5 mm	1.2 mm
Sensitivity to slow neutrons	small	negligible
Hadronic shower radius	larger	smaller
Single particle resolution	better	worse

 K_L^0

Neutron

Momentum [GeV/c]	5	10	20	Momentum [GeV/c]	5	10	20
$\sigma = x\sqrt{E}$ Scintillator		(54.2)	(55.5)	$\sigma = x\sqrt{E}$ Scintillator		(54.2)	(55.5)
$\sigma = x\sqrt{E}$ RPC	0.57	0.66	0.64	$\sigma = x\sqrt{E}$ RPC	0.78	0.80	0.74

Tradeoff

More studies needed...

Summary

PFAs are needed to improve jet resolution beyond ~50%/√E

PFAs have been applied to existing detectors and work

LC detectors being designed with application of PFA in mind

Calorimeters with extremely fine segmentation shortest possible Moliere Radius Technical solutions being developed

Detailed measurements of hadronic showers absolutely needed

Prototype ECALs with 0.2 cm² – 1.0 cm² pixels

HCALs with 1.0 cm² – 3.0 cm² readout pads

Funding badly needed