GLD background study with Jupiter

A. Sugiyama(Saga univ.) 2005 ALCPG @snowmass

Introduction tools result@snowmass plan

Introduction

It is very important when you design IR and protection of Det. from various bkgs. Background study has been done by 2 other concepts very strongly for many years.

=> Do we need own background study? No. Just borrow others results for GLD design to save manpower

> Yes. we have to do it in order to justify our design. Bkg had been estimated but reality provides more. Many studies from different group would help !?

Which kind of background we have consider?

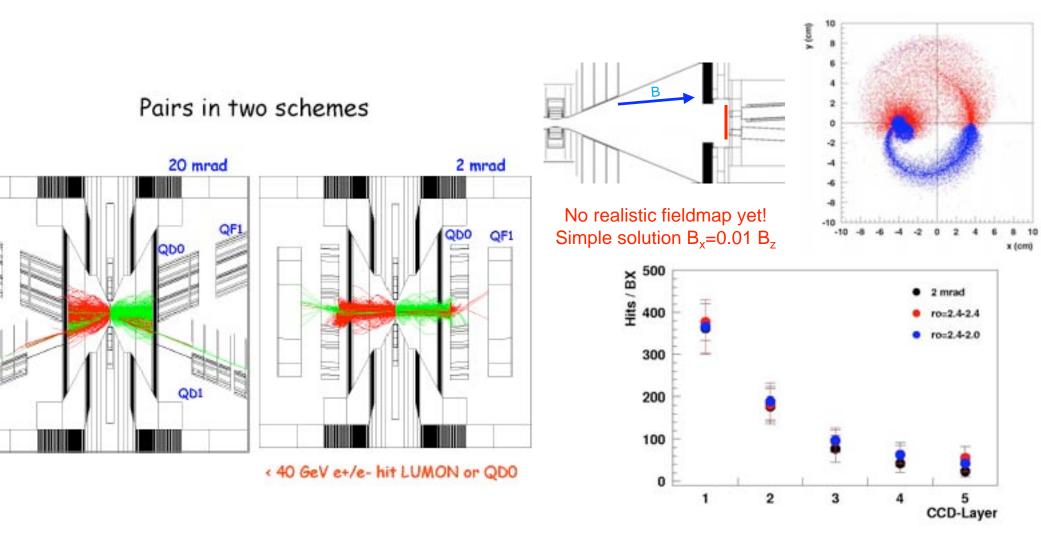
IR: beam-beam interaction : CAIN or gineapig

pair background disrupted beam beamstrahlung photon physics process two photon -> hadrons radiative Bhabha

these e/gamma produce hits in detector directly and after several interactions around detector components. not only PE,Compton interactions but also e/gamma-nucler interactons

BDS: beam core and halo produce many bkgs synchrotron radiations muon production at collimators neutron productions

> JUPI TER (Det. Full simulator w/ GEANT4)


LCBDS (BDS components w/ GEANT4) Tauchi report for T.Abe

other concepts

SiD

by T. Maruyama

Added dipole correction field ("DID")

2 mrad for comparison

DID field removes LDC asymmetries by K. Buesser

Status

Actual work has been started after ACFA8(July 05)

CAIN bkg provided from T.Tauchi

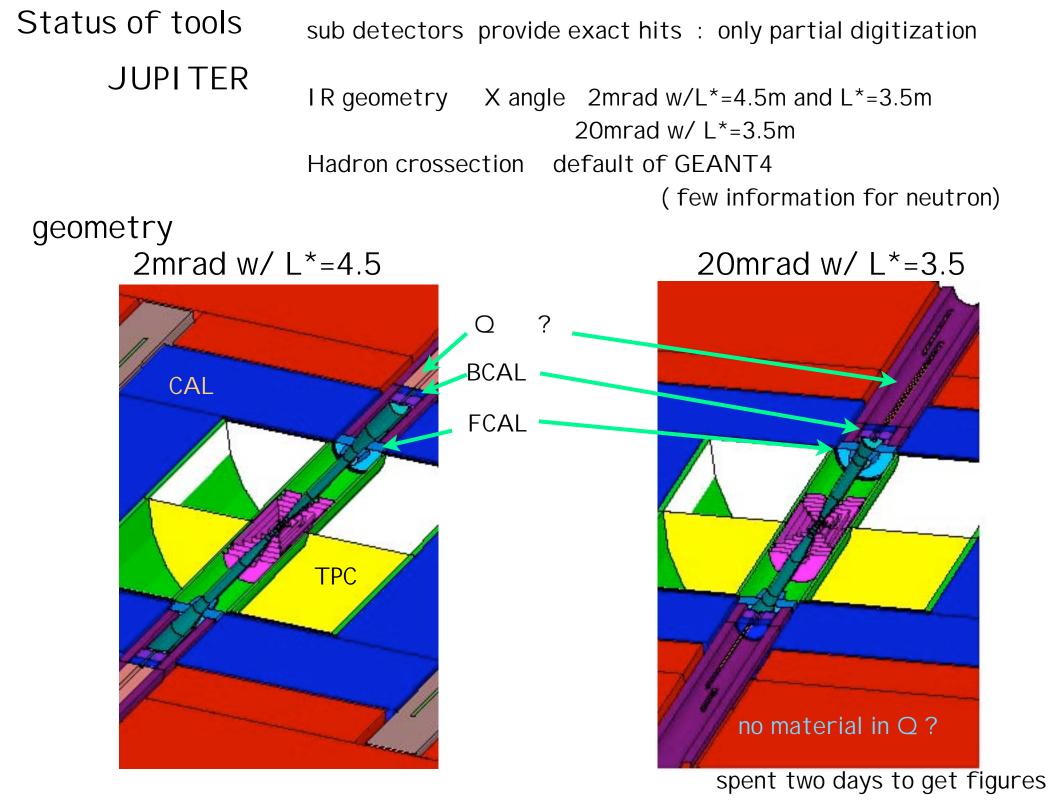
I R components into Jupiter ----> A. Miyamoto

LCBDS (originally developed at Aihara's Lab.:U.Tokyo) setup -----> T.Abe BDS SAD files from S.Kuroda

User

-----> Sugiyama(myself)

the first end user for JUPI TER (?)


modest experience of C++

tiny experience of ROOT

no experience of GEANT4

no knowledge about IR/Accelerater

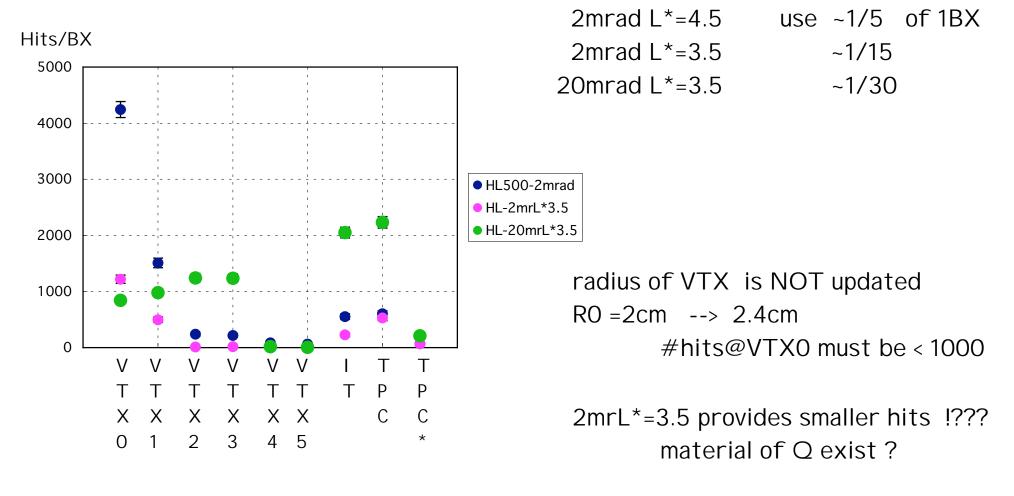
Jupiter is almost ready at snowmass (but geometry is not complete yet) VTX radius is not updated Computer shutdown for Power outage@KEK (1st week of snowmass) try to use Tohoku computer w/ help of Jeri,Fujikawa Sim. work can be started from Sunday night Obtained result is very few, but study has been started at snowmass

CALN output 7 machine params. w/ 2 energy

pair background

Results of CAIN (v21e) at Ecm=500GeV

parameter	unit	Nominal	Low Q	Large Y	Low P	High Lum	High Lum-1	High Lum-2		
Ecm	GeV	500								
Luminosity	10 ³⁴ cm ⁻² s ⁻¹	2.07	1.98	1.73	2.00	5.08	3.44	2.82		
Ngamma	/electron	1.296	0.834	1.911	1.861	1.798	1.30	1.28		
Inc. Pairs:E>3MeV	10 ⁴ /bunch	6.45	2.47	7.07	15.9	18.5	10.01	8.16		


Results of CAIN (v21e) at Ecm=1TeV

parameter	unit	Nominal	Low Q	Large Y	Low P	High Lum	High Lum-1	High Lum-2	
ECM	GeV	1000							
Luminosity	10 ³⁴ cm ⁻² s ⁻¹	3.42	3.48	3.18	3.60	10.33	6.91	5.67	
Ngamma	/electron	1.472	1.01	2.515	2.218	2.336	1.765	1.730	
Inc. Pairs:E>3MeV	10 ⁴ /bunch	11.9	4.98	16.5	33.1	45.6	25.05	20.21	

Beamstrahlung photon, disrupted beam output were also prepared Jupiter takes ~5 hours/3000 events needs ~1000 hours to finish complete set (500GeV) of 1 BX pair bkg

20~25 BX sets are studied for error estimation

HighLum500 pair (181k events)

#hits on VTX ~ similar except VTX0/1
(LDC VTX1 ~400 VTX5 ~50)

#hits on TPC ~1/10 of LDC(~4000)

Many TPC hits produced by same electron traveling TPC

PLAN

Continue study check suspicious things fix bugs use proper Physics List include DID (almost ready by Miyamoto) CPU time

Until acc. design be fixed, available time is limited borrow predecessors results as much as possible focus into GLD specific points where is it ? suggestions from experts are necessary these can be modified after ACC. design fixed ?? Is it better to do LCBDS study now ?

I'm going to recruit one student for this study(CAIN+JUPITER / LCBDS).

Background tolerances are discussed at snowmass 10% occupancy of TPC is considered !! We have to make sure it does work or not using full sim. + recon. + ZH event + background data

Summary

Nothing to summarize

just Tools/environment for background study became almost ready at Snowmass