Electronics for GLD Calorimeter

2005/08/24 GLD CAL session at Snowmass H. Matsunaga

Photon Sensors

- Photon sensors
 - Hamamatsu MPC (Multi-pixel photon counter)
 - Russian SiPM
 - Directly attached to the scintillator end
- Common for ECAL, HCAL and muon detector
 - Huge number of channels:
 - ECAL: ~6M
 - HCAL: ~30M
 - (muon: ~10k)

 $\Rightarrow 1 \text{ mm}$ $\Rightarrow 1 \text{ mm}$ $\Rightarrow 1 \text{ mm}$ $\Rightarrow 1 \text{ mm}$

≒1mm

Some issues on sensors

- Operational voltage range is narrow
 - ~0.1 V for MPC
 - Accurate bias voltage control (and also modest temperature control) is necessary
 - Power supply is also the key issue
- Probably, operational voltage of MPC varies from device to device
 - How to know the best voltage for huge number of devices ?
 - How to provide various bias voltages to them ?

Requirement for FE Readout

- Number of pixels: ~1000 -> 10~12 bit dynamic range
- Good timing resolution
 - Bunch ID
 - Slow neutron detection?
 - TOF at the innermost layer of ECAL ?
- Dark hit-rate: < 1MHz tolerable ?
- Low power consumption:
 - ~20mW/ch may be possible
 - Power loss in cable should be small

Requirement (cont)

- Readout between bunch trains (200ms)
 - Assuming 1Gbit/sec transfer rate,
 - ~25 Mbytes at maximum
 - 4 bytes/event x ~6k events/trains is possible
 - Zero suppression
 - Buffers

Solution by CALICE group

- Talk by Felix Sefkow (DESY) in Calorimeter session
- This is just for testbeam; may need better method for production
 - Number of sensors: a few thousands
 - SiPMs with ~1000 pixels
 - During testbeam, they will be monitoring sensor gain with LED, without temperature control

Bias voltage adjustment

- Bias voltages are determined at test bench in advance for all sensors
 - 15 SiPMs under monitored LED source
 - Adjust working point (bias voltage) to 15 pixels/MIP
 - Up to 500 / week

Voltage variation

- Two clusters for bias voltage setting:
 - 33~41V, 60~67V
- Sensors are grouped in modules according to bias voltage
 - 108 / half module
 - +- 2V / module

Front-end Electronics

- ILC-SiPM chip: 18ch Pre-amplifier, shaper, track and hold, mux
 - based on CALICE
 SiW ECAL chip

Our plan

- ECAL beamtest: ~2007 (FNAL / DESY) ?
 - Front-end electronics and DAQ
 - DAQ system might be shared with other groups?
 - Mass production and quality control
- Beyond testbeam
 - -???
- Manpower:
 - Manobu Tanaka (KEK) : ASIC development
 - Patrick LeDu is interested ...
 - Others?

Basic idea of FE board

 SQV: Synchronous Current Integrator for Q-to-V conversion

SQV-TEG & Ethernet board

- Prototype boards already exist
- Bias voltage controller should be added

Backup

Some comments on DAQ

- In my opinion, there is no big difference between three concepts
 - No need for hardware trigger; Only software trigger (running on commodity PCs) may be sufficient
 - Number of channels are quite large compared to previous experiments
 - New technology should be followed up
 - GDN, Grid?
- In order to establish the DAQ scheme, communication with sub-detector groups is necessary
 - Cost estimatation
- Patrick will talk more details about (his) current idea