Review of Silicon Inner Tracker

H.J.Kim (KyungPook National U.)

Talk Outline

- Configuration optimization of BIT and FIT
- Silicon Sensor R&D
- Electronics R&D
- Summary and Plan

Detail study will be presented by E.Won
1) "A Simulation Study of Silicon I T for GLD", Tues 1:30pm
2) "Status of DSSD R&D for Inner Tracking", Thurs. 1:30-1:50

IT Collaboration for GLD

Kyungpook/ Seoul Nat. Univ.

- Configuration optimization
- mask design
- DSSD simulation
- Sensor characterization
- Radiation damage study

Korea/ Chonnam Univ.

- Configuration study
- hybrid development
- Readout Electronics

4 faculty members and 7 graduate students. (Not all are in full time)

Configuration

- Barrel Inner Tracker design optimization
- Forward Inner Tracker baseline design
- Endcap Silicon Tracker between TPC and CAL
- Background study
- Single side vs Double side SD
- IT Optimization for physics improvement

GLD Geometry (vertex and tracking only)

items	ACFA8	snowmass
barrel IT	4 layers	4 layers
forward IT	did not exist	7 layers
software	"gld v1"	various updates

Barrel/Forward Intermediate Trackers ("snowmass parameters")

Barrel IT

- spatial resolution 10 μm
- 4 layers (thickness 561 μm Silicon strip)
- r=9 cm (innermost), 30 cm (outermost)
- half z = 18.5 cm (innermost), 62 cm (outermost)

$e+e- \rightarrow ZH$, ZZ Study (ongoing)

GLD default configuration - input m_H = 120 GeV + PYTHIA + Geant4

We have been (and will be) working on roles of IT in terms of physics ...

With and W/O I

Number of layers vs. resolution

Number of layers vs. resolution (forward)

Resolution vs. p_T

- Double side, single side sensor and pxiel sensor
- Characterization of DSSD sensor and S/N
- DC vs AC type
- Radiation damage

DSSD Schematic

DSSD Parameters

LIST	DC-TYPE		unit
	p+ side	n+ side	unit
Sensor size	55610 X 29460 (include sawing line)		μm
Wafer thickness	380		μm
pitch	100	50	μm
readout trace pitch	50	50	μm
implant strip #	511	511	sensor
number of readout	511	511	sensor
strip length	25600	51072	μm
strip width	9	9	μm

N-side Design

DSSD's from Latest Fab out

Full Depletion Voltage ~100V
Operation Voltage ~120V

P-side Guard Ring
~ 1uA/sensor @100V
All P-strips
~ 8-50nA/strip @100V
No extremely Leaky
P-strips

Sr-90 beta Source Test

Sensor Irradiation Test

cyclotron in Korea Institute of Radiological and Medical Sciences : 35MeV proton cyclotron

I/V before and after irradiation

BEAM TEST_C3T3_IV_Pside_10^12

BEAM TEST_E3T2_IV_Pside_10^14

BEAM TEST_G5T2_IV_Pside_10^13

Electronics & support structure

- PreAmp (+shaping and holder with VA)
- Hibrid board (control +HV)
- FADC
- New Readout Electronics with pipeline
- Long ladder issue (S/N)
- Support Structure

Status of Hybrid Board

- We mounted latest fab out DSSDs to the hybrid (August 9)
 - ✓ VA1 + RC sensor + 511 channel DSSD
- Wire bonding done (August 11)
 ✓ pads VA : by a company (LP electronics in Korea)
 ✓ VA RC, RC DSSD : done by a KEK expert (T.Tsuboyama)

Summary

 A lot of progress on BIT and FIT Configuration since ACFA8
 BIT Optimization
 CIT becaling configuration

2) FIT baseline configuration

□ Silicon Sensor R&D is going as planned.

- 1) DSSD design and fabrication
- 2) Characterization & S/N OK
- 3) Radiation damage test results.

Readout electronics is in progress.

Future plan for study

- □ Configuration
- 1. Endcap Silicon Tracker between TPC and CAL
- 2. Background study
- 3. Single side vs Double side SD
- 4. IT Optimization for physics improvement
- Silicon Sensor R&D
- 1. Single side sensor (and pixel sensor)
- 2. AC type
- 3. Larger wafer (6", 8")

Readout electronics & Support Structure
 New Readout Electronics with pipeline
 Long ladder issue (S/N, shaping time)