Forward tracking in the LDC

Klaus Mönig

Why forward tracking?

- Many processes at LC are peaked in the forward region like Bhabha scattering or W-pair production
- Fermion pair production has highest sensitivity to forward-backward asymmetry or to distinguish Z' effects from extra dimensions in the forward region

- W-pairs forward peaked with high momentum muons due to W-polarisation
- Good momentum resolution in the forward region is essential for charge determination and W suppression

Bhabha scattering

- ideal calibration process for the beam spectrum
- again strongly forward peaked $(d\sigma/d\theta \propto 1/\theta^3)$
- reconstruct $\sqrt{s'}$ of e⁺e⁻ system from polar angles assuming energy momentum conservation and only one radiated photon
- want to measure beamstrahlung $(\mathcal{O}(10^{-2}))$ and beam energy spread $(\mathcal{O}(10^{-3}))$
- $\sqrt{s'}$ error from angular reconstruction method: $\Delta \sqrt{s'}/\sqrt{s'} \approx \Delta \theta/\sin \theta$ need $\Delta \theta < 10^{-4}$ in forward region
- electrons radiate in material and cylinders (e.g. TPC field cage) are crossed with small angles
 - better assure angular resolution close to the IP
- good angular resolution close to the IP is key point for Bhabha

Forward tracking in LDC

- Charged particle tracking above $\theta = 7^{\circ}$
- Main tracker: TPC (gradually getting weaker below $\theta = 32^{\circ}$)
- Silicon tracking between VTX and TPC (FTD)
- Forward chamber behind TPC endplate

Momentum resolution in the forward region

• Without specialised forward tracking resolution gets weak around 20° and stops at 12°

FTD mandatory for muons and hadrons

- FCH improves resolution for $\theta < 10^{\circ}$
 - useful for muons, for hadrons should be discussed

1/p resolution for 200 GeV muons vs θ **a**) VTX,TPC + SIT/FTD + FCH 10 10 90 **30** 20 θ [deg]

Snowmass 2005 5 Klaus Mönig

The FTD

- (two barrel layers, r = 16, $30 \, \text{cm}$, $\sigma = 8 \mu \text{m}$ resolution similar to LEP, but larger)
- Optimised for the TESLA TDR → should be updated
- three pixel disks $\sigma = 50 \times 200 \mu \text{m}$ crossed basically a copy of ATLAS
- four strip disks, $\sigma = 25\mu \text{m}$ (90 μm strip pitch, 270 μm readout pitch) back-to-back or double sided

Some details

- Decision pixels/strips:
 - pixels are more expensive
 - pixels are less sensitive to background
 - pixels give less ambiguities in pattern recognition
 - -strip resolution usually better
- For the pixels the very rectangular shape from ATLAS ($\sigma = 50 \times 200 \mu \text{m}$) is taken
 - if the narrow direction is alternated resolution is better than squares with same area

- How to avoid too many ambiguities in strips in hadronic events?
 - chose trapezoidal modules
 - -strips parallel to one edge
 - flipping modules gives stereo angle with only one module type

Efficiency vs $\cos \theta$ in FTD/SIT for hadrons

The present FTD design reaches sufficient θ resolution for Bhabha acolinearity measurement and $\sim 90\%$ standalone pattern recognition efficiency in hadronic jets

Polar angle resolution in forward region

$\sqrt{s'}$ spectra from Bhabha acolinearity

Next step: optimise design to keep systematics below resolution see Aurore's talk

Forward chambers

- TPC gets weak around $\theta = 12^{\circ}$
- Add a precise forward chamber between TPC and ECAL eq. point res.: $(\sigma \approx 50 \mu \text{m})$
 - Possible technology: 12 planes of straw tubes in three orientations $(\sigma_{\rm Pl.} \approx 100 \mu {\rm m})$
 - Attention: Design was done for $170 \,\mu\mathrm{m}$ TPC resolution, should be reconsidered for better resolution

Design considerations

FCH reconstruction efficiency in

► FCH behind thick TPC endplate
⇒ only useful in p-measurement for high momentum particles

- For isolated particles straws are sufficient
- However efficiency in jets only marginal
- Need to know if FCH useful in energy flow algorithms (e.g. track-shower matching)
 - If yes, better designs are possible, e.g. silicon

Conclusions

- Special forward tracking devices are mandatory in a hermetic e⁺e⁻ detector
- Most of the job is done with silicon disks between the vertex detector and the TPC
- Some additional improvements from forward chamber in front of ECAL
- Still need optimisation for best performance and minimal systematics