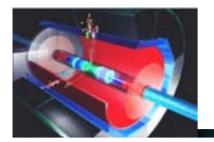
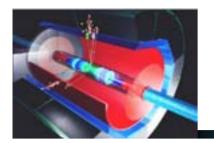


ECAL HCAL optimization

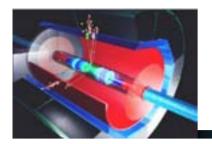
Felix Sefkow DESY CALICE collaboration


ALCPG workshop at Snowmass August 23, 2005

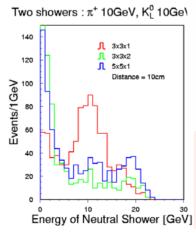
A few thoughts

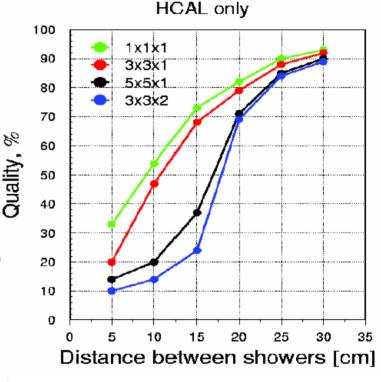

Generalities

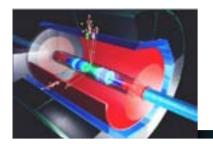
Absorber material


Optimization

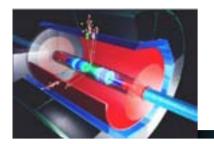
- Wanted: $d \Phi / d \in d$ = d physics / d cost
- Must factorize: d physics / d cost
 - = d physics / d detector performance
 - * d detector performance / d technology
 - * d technology / d cost
- e.g. W Z separation, particle separation power, granularity
 - Jet energy driven by different components for different processes
- PFLOW decomposition studies extremely useful!



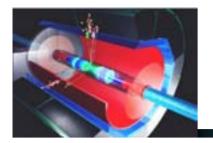

- The most prominent physics cases for ultimate PFLOW performance involve high \s and E_jet
 - Higgs self coupling, WW vs ZZ, ...
- Optimize PFLOW for high energy jets!
 - Present studies focus on the Z peak
 - I guess at 1 TeV the influence of the confusion term will be larger and that of the low p_t loopers smaller
- Don't forget missing energy performance
 - Importance of leakage, dead material and hadron energy resolution might be different
 - Maybe trivial, but should be looked into


Benchmarking

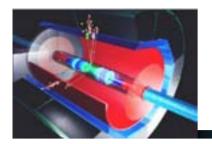
- Physics performance depends on many efefcts
 - Jet algorithm, ISR,...
- ... which we do not control and which wash out detector effects
- Need detector benchmarks
- Example: shower separation
 - proved very useful guidance for HCAL granularity



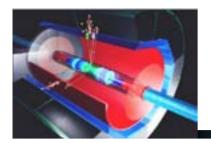
Here: Quality = fraction of neutral hadrons with E_{reco} within 3 σ



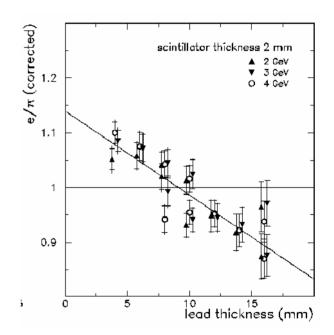
- In some lucky cases performance saturates
- In most cases, however, dependences are more or less linear in the sensible range
- No optimization without parametric cost model
 - R&D groups start cost review now
 - Limited realism without technology prototypes (ECAL module "0")
- Engineering input see absorber material discussion

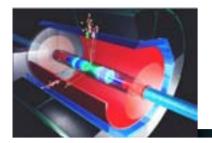

HCAL absorber material

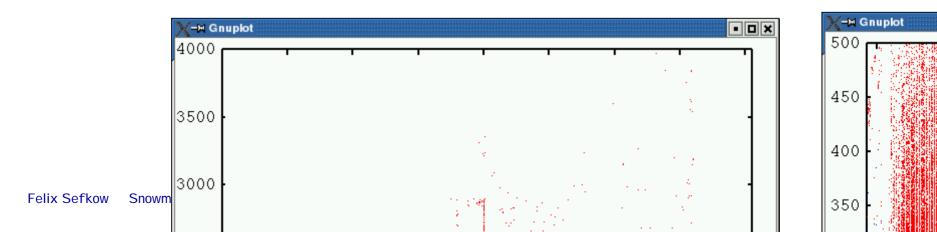
- Au, Pt, U, W, Pb better than steel?
- Uranium implies high threshold term due to noise
- W and Pb: need enineering input
 - mechanical supports for non-Fe introduce dead material
 - hadron resolution, leakage, loss off pattern recognition performance
- need to adapt granularity to benefit from Moliere Radius
 - Cost prohibitive (# channels ~ R_M^2)
 - Or not necessary? Better imaging with same granularity?

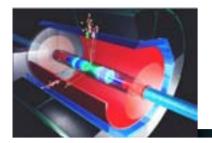

- Best method to improve HCAL performance is still to make it deeper (total hadronic interaction length)
- win by making the ECAL Si section thinner?
 - intermediate W Sci section?

ECAL HCAL transition


- How much ECAL?
- Can one improve the "ECAL performance of the HCAL"?
- Or arrange a smooth transition?
 - Some W in the HCAL
 - Some Scint. in the ECAL


W	6 Ge at	5	cm	nd 4 dist a n π ⁰	ance		
3		**************************************					


- Don't win in lambda, but in Moliere radius
 - Again: benefits without prohibitive channel count?
- And in hardware compensation
 - Saw a resurrection of hadron energy resolution
 - Driven by fluctuations
 - Optimize e / π
- In particular if ECAL is Pb, too
 - Only question is where to change from Silicon to SiPM



- PFLOW possible?
- Tracker endcap?
 - Personally, don't care for 10% X_0 but no extra chamber, please!
- Background and occupancy?

Neutron hits

- Study by A. Vogel
- Dots sho origin of neutrons