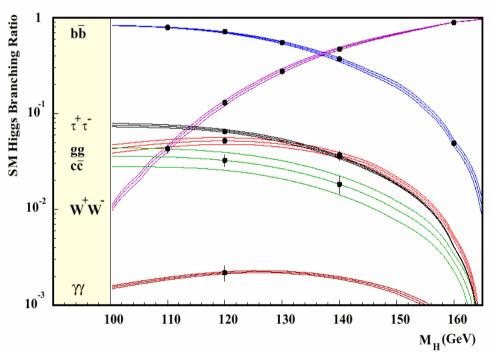
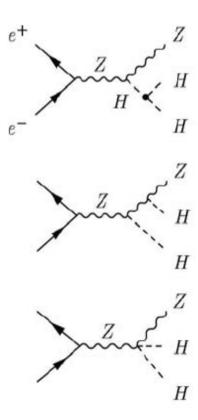


What sort of Vertex Detector is needed?

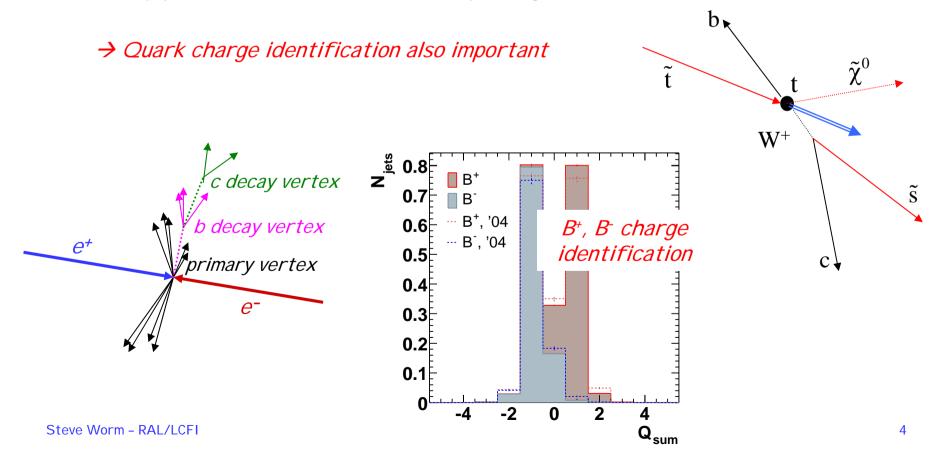

- Detector parameters driven by the physics needs
 - ILC is built for precision physics; reflected in detector
 - Must identify b, c, tau decays, also charge
 - Coverage to far forward, ultra-low mass
- o Detector must fit the environment and construction constraints
 - How to get services in, cables and heat out
 - Detector operational environment must be better understood.
 - Can the beam structure can be exploited?
- The construction timescales
 - Vertex detectors always seem to be last to be installed- that's a good thing!
 - Detector TDR by 2008-2009, but detailed VTX design can come after this
 - Aim for VTX technology choice by ~2010
- See also talks by...
 - Marco Battaglia, general vertexing details/options
 - Sonja Hillert, vertex detector and beam pipe radius
 - Many more in Vertexing session, LGC, SiD, Tracking session, etc.


Steve Worm – RAL/LCFI August 16, 2005 2

Flavour I dentification at the ILC

- Understanding the new physics will require identifying heavy quarks.
 - Higgs Branching ratios; are they as expected in the Standard Model?
 - Separation of b from b, and c from c will be important.
 - High efficiency, purity to measure multi-b states, eg. e⁺e⁻ → HHZ, ttH
 - Leads to reduced combinatorial background.

→ Excellent b, c (and tau) tagging crucial


Steve Worm - RAL/LCFI

August 16, 2005

3

Quark Charge I dentification

- Provides a new tool for physics studies
 - Helps sort out complicated multijet events, e.g. e⁺e⁻ → ttH → jets
 - Allows study of polarisation in top decays, e.g. t → bW⁺ → b(cs)
 - Determine $\tan \beta$ and tri-linear couplings A_t and A_b through measurements of top polarisation in sbottom and stop decays.

Vertex Detector Performance Goals

o Physics environment:

- Average impact parameter, d₀, of B decay products ~ 300 μm, of charmed particles less than 100 μm.
- d₀ resolution given by convolution of point precision, multiple scattering, lever arm, and mechanical stability.
- Multiple scattering significant despite large √s, as charged track momenta extend down to ~ 1 GeV.
- Resolve all tracks in dense jets.
- Cover largest possible solid angle: forward/backward events are important.
- Stand-alone reconstruction desirable.

 In terms of impact parameter, require resolution in Rφ and z:

$$\sigma = \sqrt{a^2 + \left(\frac{b}{p\sin^{\frac{3}{2}}\theta}\right)^2}$$

 $a < 5\mu m$ (point precision)

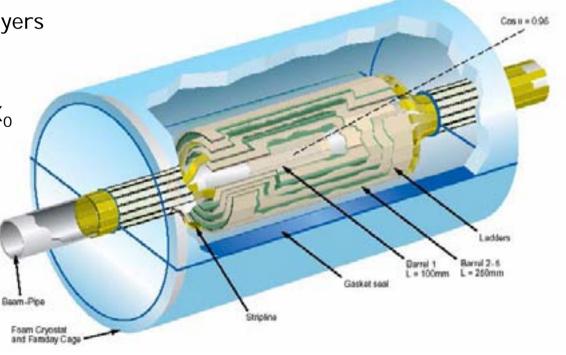
b < 10 μm (multiple scattering).

Implies typically:

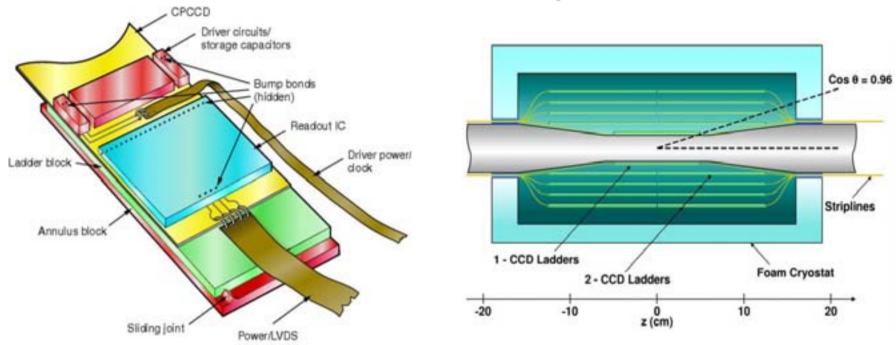
- Pixels ~ 20 x 20 μ m².
- First measurement at r ~ 15 mm.
- Five layers out to radius of about
 60 mm, i.e. total ~ 10⁹ pixels
- Material ~ 0.1% X₀ per layer.
- Detector covers $|\cos \theta| < 0.96$.

Physics Drives the Need for Precision Tracking

How precise will the tracking be? Why is such high precision needed?

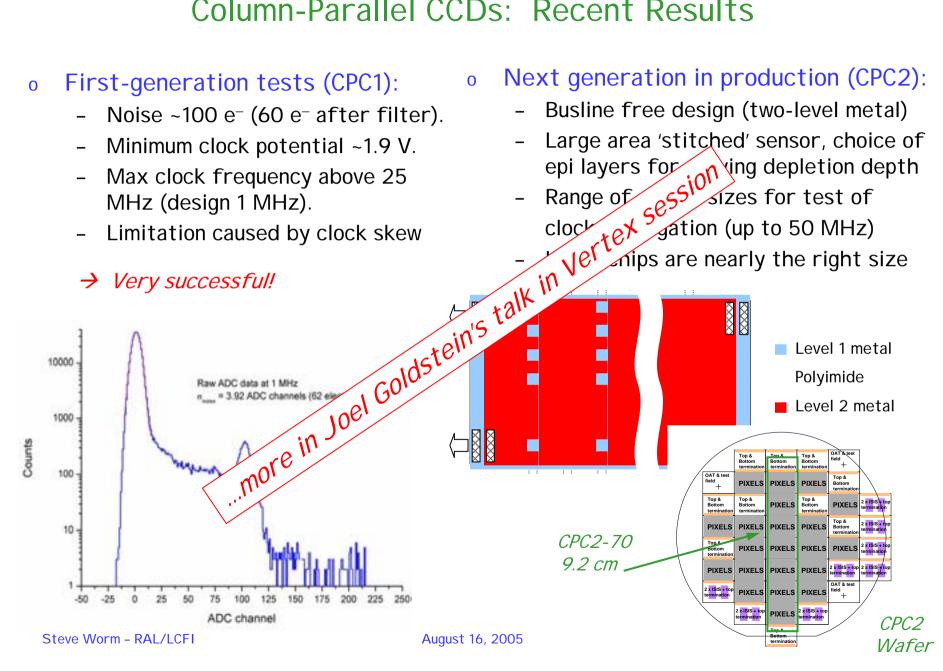

In terms of momentum resolution:

Experiment	Δ (1/p _T) [GeV/c] ⁻¹				
CDF	0.15 %				
ATLAS	0.3 %				
ILC	0.005 %				


- o Higgs physics is standard example: e+e- → HZ with Z → leptons
 - High precision tracking allows determination of mass of recoil
 - Study Higgs production independent of decay modes
 - Reduces combinatorics, drives high magnetic field, large volume tracking
 - More examples: charm and tau tagging, precision tracking for energy flow
- Need for precision tagging of b, c, tau implies
 - Small inner radius: ~15 mm
 - Excellent resolution in z, $R\varphi$: 5 μ m pointing precision
 - Constraints on mass (multiple scattering): 0.1% X₀

LDC Vertex Detector

- Detector not yet final; sensor technology not chosen yet
 - Many options from TESLA TDR; CCDs, CMOS pixels, hybrid pixels
 - Many new ideas being developed
 - It is too early to choose (no need to yet)
- o Fast (column-parallel readout) CCDs used as default technology in TDR
 - Most developed sensor+layout
 - 800 million channels
 - 20 x 20 µm pixels in 5 layers
 - Inner radius 1.5 cm
 - Readout time 50 μs
 - Ladder thickness 0.1% X₀

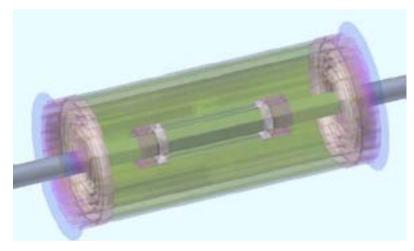

Vertex Detector Layout

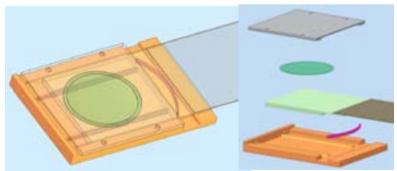
Layer	Radius [mm]	L x W [mm ²]	CCD size [Mpix]	Ladders	Clock [MHz]	Background [hits/mm², khits/train]	
1	15	100 x 13	3.3	8	50	4.3	761
2	26	125 x 22	6.9	8	25	2.4	367
3	37	125 x 22	6.9	12	25	0.6	141
4	48	125 x 22	6.9	16	25	0.1	28
5	60	125 x 22	6.9	20	25	0.1	28

Column-Parallel CCDs: Recent Results

First-generation tests (CPC1):

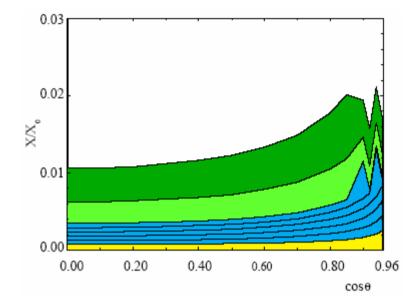
Additional Implications, Mechanical Considerations


o Requirements:


- High precision sensors (20 micron or smaller pixels)
- Low mass $(0.1\% X_0)$

o Practical aspects:

- Alignment possibility
- Sensors must be low power, gas cooled
- Low mass ladder ends
- Cables, services routed so as not to add mass
- Mechanical stability to few microns
- Must withstand thermal cycling
- Full detector layout
- Must be able to hold the ladders



Review of the Detector Layout

o (Re)optimising the layout

- How many layers, length?
- Forward disks, how many, where?
- Inner layer size, location?
- Is the distribution of mass acceptable?
- What is impact on physics?

Does the VTX work well with expected beam structure?

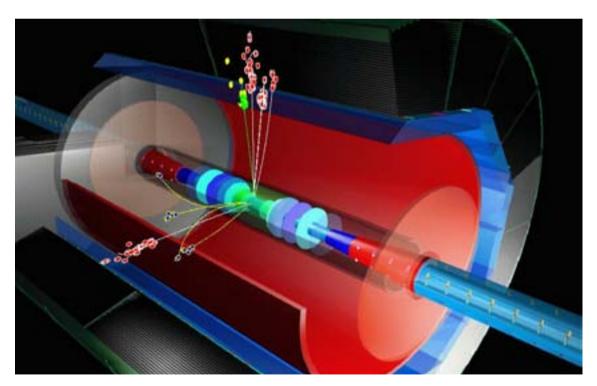
- Are we sensitive to beam parameter variations?
- Are recent background studies correct?

→ Should revisit all detector layout questions in coming year.

Beam and IP parameters for 500 GeV cms

	TESLA	USSC	Nominal	Low Q	Large Y	Low P	High L
E_{cms} (GeV)	500	500	500	500	500	500	500
$N(10^{10})$	2.0	2.0	2.0	1.0	2.0	2.0	2.0
n_b	2820	2820	2820	5640	2820	1330	2820
t_b (ns)	336.9	336.9	307.7	153.8	307.7	461.5	307.7
bucket interval	438	438	400	200	400	600	400
I_{ave} (mA)	9.5	9.5	10.4	10.4	10.4	6.9	10.4

Next Steps


Important VTX questions to address (or re-visit):

- Inner radius (as it will be fixed soon)
- 2. Backgrounds
 - Assumptions about backgrounds being hard-wired into VTX designs... all calculations should be reviewed.
 - How precisely do we know beamstrahlung, backsplash from masks, neutrons from dumps, etc.?
 - How well is the radiation environment known?
 - Can we run with reduced field? What does this to inner VTX layer?
- Thermal/mechanical issues
 - How much power does your favorite sensor technology require?
 - Does cooling result in mass in the central/forward region?
 - How much does pulsed power help?
- 4. Readout details of VTX, and connection to physics
 - Simulations do not yet include operational details or detector response.
 - Need to state detector optimisation in terms of benchmark processes.
- 5. Mechanical design, including assembly, services, cable routing, etc.

Conclusions

Our goal is to further optimise the vertex detector by taking into account:

- modified machine design parameters
- updated physics benchmarks
- results from ongoing detector R&D, new ideas
- → The LDC VTX concept well developed, but still time for improvement!

