A hit density driven clustering algorithm for PFA study

Lei Xia ANL-HEP

SiD calorimeter WG

Introduction

Goal: to have a clustering algorithm that can

- Form clusters that can closely represent single particle shower
 - Pick up as many hits as possible for a single particle
 - Distinguish different particles
- Treat ECal and HCal as one detector
 - Treat cell/layer structure properly
 - Cluster doesn't break up at boundaries
- Adjustable parameter for PFA
- Reality: hadron showers have hits all over the detector
 - Impossible to pick up every hits of a shower without messing up different showers
 - Try to pick up only the central part of a shower, and deal with fragments later
 - Use hit density to drive the clustering
 - Using sidmay05 simulation, with RPC DHCal (projective geometry, barrel cell size 7.4 – 12.mm)

Clustering: hit density

$$D_{ij} = e^{-(|(\hat{V}_1, R_{ij})|/|V_1|)} \times e^{-(|(\hat{V}_2, R_{ij})|/|V_2|)} e^{-((\hat{V}_3, R_{ij})/|V_3|)}$$

With V₃ = V_f (if (V_f, R_{ij}) > 0) or V_b (if (V_b, R_{ij}) > 0)

- Try to find a two-point density function which can reflect the closeness of two hits (relative to local cell size)
- Considered hit density variation in different directions
- It is a very local density function, only nearby hits contribute
- So far, didn't consider hit energy weighting

- Find a cluster seed: hit with highest density among remaining hits
- Attach nearby hits to a seed with a tight cut on hit-seed density
- Attach additional hits with a tight cut on hit-seed cluster density
 - EM hits, D(hit,cluster) > 0.01
 - HAD hits, D(hit,cluster) > 0.001
 - Grow the cluster until no hits can be attached to it
- Find next cluster seed, until run out of hits

Hit efficiency: single particle

Particle	ECal hit efficiency	HCal hit efficiency	Overall hit efficiency	Overall energy efficiency
Photon (1GeV)	89%	43%	89%	91%
Photon (5GeV)	92%	54%	92%	96%
Photon (10GeV)	92%	61%	92%	97%
Photon (100GeV)	9 5%	82%	9 5%	>99%
Pion (2 GeV)	78%	5 9 %	75%	71%
Pion (5 GeV)	81%	70%	79%	80%
Pion (10GeV)	84%	80%	83%	85%
Pion (20GeV)	85%	87%	88%	91%

•Typical electron cluster energy resolution ~ 21%/sqrt(E)

•Typical pion cluster energy resolution ~70%/sqrt(E)

•All numbers are for one main cluster (no other fragments are included)

Hit efficiency: single particle Very preliminary: from sidaug05_scinthcal (scint. DHCal, 7.4 – 12.mm barrel cell size)

Particle	ECal hit efficiency	HCal hit efficiency	Overall hit efficiency	
Pion (2 GeV)	78%	30%	62%	
Pion (5 GeV)	82%	47%	66%	
Pion (10GeV)	86%	58%	72%	
Pion (20GeV)	88%	71%	78%	

•All hadron calorimeter hits need to pass through a 0.3MeV cut

Shower separation...example

- 10 GeV photon converts to e+e- pair
- The two showers can be clearly separated

Shower separation...example

- 10 GeV e⁻ kick out a 5 GeV photon in tracker
- With appropriate density cut, the algorithm can separate the two showers
- Old picture from SDjan03 simulation

Z pole uds events: cluster purity

- Most of the clusters (89.7%) are pure (only one particle contributes)
- For the rest 10.3% clusters
 - 55% are almost pure (more than 90% hits are from one particle)
 - The rest clusters contain merged showers, part of them are 'trouble makers'
- On average, 1.2 merged shower clusters/Z pole event

Preliminary: sidaug05_scinthcal

number of contributing particles in cluster (N>10)

- 81.0% of the clusters are pure (only one particle contributes)
- For the rest 19.0% clusters
 - 68% are almost pure (more than 90% hits are from one particle)
- On average, 1.6 merged shower clusters/Z pole event
- Projective geometry, 7.4 12.mm barrel cell size

Thing to work on...

- Better understanding of clustering
 - Hit efficiency -> new calibration(?)
 - Optimize density cut according to PFA performance
 - What to do with merged showers?
- Cluster ID
 - -e/gamma, hadron, fragment
 - Clusters that contain multiple showers