Clustering and PFA plans

Dhiman Chakraborty, Guilherme Lima, Rob McIntosh, Vishnu Zutshi

Snowmass Workshop August 14-27, 2005

Clustering and PFA

- Goal: develop yet another complete Particle Flow Algorithm based on a calorimeter-only clustering algorithm (Vishnu Zutshi).
- Participate in the detector optimization effort
- Development has been based on SiD and non-projective geometries, but algorithm is in no way restricted to these characteristics
 SDNPHOct04 is based on SDJan03, steel/scintillator, with non-projective HCal barrel and replacing 34 1cm-thick with 41 0.5cm-thick scintillator layers, simulated by LCDG4
- Plans to consider digitization effects in the detector optimization (DigiSim)

Directed Tree Algorithm

- Define a cell neighborhood
- Discard low-energy hits (1/4 MIP cut)
- Calculate density for each hit, based on number of hits on neighborhood
- calculate Distance-Weighted Density Differences, $(D_j D_i)/d_{ij}$, for all hits j in the i's neighborhood
- Find i,j pair of hits (i,j) with maximum DDWD
 - negative max: *i* is the seed of a new cluster
 - positive max: i is attached to j, which may be a seed or become attached to some other seed

Single particle events

No problem to reconstruct the clusters from single hadrons. Some fragments are clear though.

Z --> hadrons

Seems to be doing a good job, but one needs to quantify the performance

Algorithm performance

- Calorimeter only
- Compare reconstructed to generated cluster energies after cluster matching
- Calculate E_{rec} / E_{gen} for each generated cluster
- Enter into histogram with weight E_{gen} / E_{total}
- Ideal: spike at 1

Cluster matching and merging algorithms

- Stage 1: one-to-one gen-reco matching, based on distances (3D or angular)
 - --> several remaining clusters ("satellites")
- Stage 2: attach satellites to reco clusters, based on angular distances possible cuts on angular separation, satellite energies, #hits

Preliminary ECal analysis

- 500 events, with 2-pions 10cm apart at Ecal face, using SDNPHOct04 detector
- neighborhood definition:
 (dphi=5, dZ=5, dlayer=9)
- discard events with decays or interactions before Ecal
- Look at:
 - eratio1: Erec/Egen after stage 1 (matching)
 - eratio2: Erec/Egen after stage 2 (merge satellites)

Preliminary HCal analysis

- 500 events, with 2-pions 10cm apart at Ecal face, using SDNPHOct04 detector
- neighborhood definition:
 (dphi=2, dZ=2, dlayer=2)
- discard events with decays or interactions before Ecal
- Look at:
 - eratio1: Erec/Egen after stage 1 (matching)
 - eratio2: Erec/Egen after stage 2 (merge satellites)

Current status

- Analysis of complex events shows some problems with too many isolated satellites satellites are isolated reconstructed clusters, too far from the main shower (how to connect them?)
- Clustering algorithm converted to org.lcsim, to be certified. Committed to LCSim CVS repository
- More manpower for the PFA development effort
- This is work in progress, there is a lot of work to do!...

Things to do

- Some more parameter optimization (HCal)
- Add other tools for a complete PFA algorithm
 - track matching
 - photon ID
 - cluster shape
 - MIP tracking in calorimeters (to help connecting satellites?)
 - digitization effects

