# ILC Detector Simulation: Merged $\pi^0 / \gamma$ Cluster Pattern Recognition

#### Matthew Phillips / Andrew Hahn University of Colorado 8-17-2005

SiD Calorimeter Parallel Session

# Outline

- The CU Electromagnetic Calorimeter
  - Simulations And Methodology
- Distinguishing between  $\gamma$  and merged  $\pi^0$  Clusters
  - Motivation & Methodology
  - New Method: EM Calorimeter towers
  - Covariance Training &  $\chi^2$  Analysis
  - Results / Future Work

# The CU EM Calorimeter

- 40 layers of Tungsten / Scintillator, 3mm Scintillator,  $3/4X_0W$  Tungsten
- Offset tiles in neighboring layers
- Projective Geometry
- Segmentation  $\pi$  / 128
- Single e<sup>-</sup> resolution ~  $12\%/\sqrt{E}$



Tungsten Layer Free Space Reflector Layer Scintillator Layer





# Simulations & Methodology

#### Cluster Identification

- A Cluster is a group of hits in any system
- Ideally exist only of hits from one final-state particle
- Success How close is the algorithm to ideal
- Motivation
  - Charged Associated clusters with track
  - Neutrals Only see in Calorimeters
    - Get a direction for Reconstruction (photons) (Jack Gill Colorado)
    - Separation of Merged Clusters
- Simulation and Analysis
  - LCDG4 GUN
    - Generation of full simulation data
  - JAS 2.2.5
    - Analysis of data using hep.lcd libraries

# Merged $\pi^0 / \gamma$ Clusters

Single  $\gamma$  clusters vs. double  $\gamma$  clusters

- $-\pi^0 \rightarrow 2\gamma$  (98.798 ±0.032)% c $\tau$  = 25.1nm (PDG July 2004)
- Hard to distinguish (small opening angle)
- $\pi^0$  clusters have more oblong lateral distribution
- Previously distinguished by second moment of cluster energy, tubes, cones, layering, discrete trees ...

Cluster angular shape distribution



# Pattern Recognition in Cluster Separation: A New Approach

- Separating  $\gamma$ 's from Merged  $\pi^0$ 's
  - Using ECal design to our advantage
  - Projective geometry & non-offset tiles make simpler (for now)
- Use Covariance training to generate  $\chi^2$  confidence values
  - Create (3x3) matrices of tower energy distribution
  - Center element chosen to be max energy tower
  - Use single  $\gamma$  events to train a covariance matrix (A)
    - Incident  $\gamma$  angle is random
    - 1–10 GeV 100  $\gamma$  events (2100 for 10GeV), 15 GeV 1000  $\gamma$  events
    - $A = \Sigma(x_i * x_j) / Nevt$
  - Generate  $\chi^2$  confidence values for  $\pi^0$  events
    - Based on trained matrix (A) &  $\pi^0$  events
    - Generate an Event Covariance matrix (E), Trace gives  $\chi^2$
    - $E = \langle (x_i A_i)^* (x_j A_j) \rangle$
    - $\chi 2 = Tr(A^{-1}*E)$
  - Statistically decide what caused cluster ( $\pi^0$  or single/double  $\gamma$ )

### **Cluster Separation Methodology**

- Incident  $\gamma$  angle random LCDG4
- Projective Geometry
- Selection of greatest energy tower
- Count hits from every other layer
  - Offset tile effect



# Cluster Separation Methodology II

- Maximum energy tower = central matrix element
- Second Max. rotated to  $A_{3,2}$
- Covariance Matrix = 9\*9 reduced to 5\*5
  - 9\*9 noninvertible due to 0 hits in corner towers







Results



# **Results II**



# Conclusions/Next Steps

- Still very preliminary Work in progress
  Efficiency calculations are needed
- Code improvement First attempt
- 3\*3 matrix of towers may be too small for variability among clusters

# Future Work

- Analyze for >15GeV photons
- Offset Geometry
  - What is meant by neighboring tile?
    - Break tiles into quadrants?
  - How is a tower defined?
    - Currently: alternating layers based on max E deposited
- Non-projective Geometry
  - Hits distributed across several towers





#### References / Acknowledgements

- Duckwitz, Michael. <u>Simulating the NLC</u> <u>Large detector</u>. December 5, 1999.
- Dujmic, D. Merged  $\pi 0$  Reconstruction: <u>From Cluster Shape to Mass</u>. October 16, 2002.
- "Proposal for a Study of Scintillator Based Calorimetry Using Energy Flow Concepts." U. Nauenberg. 2001.
- Nauenberg, U. <u>Observing SUSY Events</u> <u>from Hadronic Decay Channels</u>. October 2003.
- Wagner, David L. <u>NLC SUSY Physics</u> <u>Studies</u>. October 31,1997.
- Wagner, David L. <u>Introduction to</u> <u>Supersymmetry at the NLC</u>. December 5, 1999.
- http://www.pbs.org/wgbh/nova/elegant/sm as-nf.html

- University of Colorado:
  - Andrew Hahn
  - Uriel Nauenberg
  - Joseph Prolux
  - Jack Gill
- University of Kansas:
  - Graham Wilson

# ::Extra Slides::

G.

# Cluster Separation (Angular Method) D. Dujmic 2002

• Invariant Mass Reconstruction for  $\pi^0 \rightarrow 2\gamma$ :

- $M^2 = 2E_1E_2(1 \cos\Delta\alpha_{1,2}) : \Delta\alpha_{1,2}$  is the opening angle
- $M^2 = E^2(S_{\pi 0} S_{\gamma})$  : Based on shape of cluster
- S = 1/E  $\Sigma E_i \Delta \theta_i^2$  : Second moment of the Cluster
- $-\theta_i$  = angular distance from center of cluster
- S<sub>y</sub> determined a priori by individual photon data
- Can separate by Second moment proportional to mass squared



Second moment versus inverse momentum squared