Progress towards a Long Shaping-Time Readout for Silicon Strips

Bruce Schumm SCIPP & UC Santa Cruz Snowmass Linear Collider Workshop August 14-28, 2005 **Overview**

Status as of LCWS05

- Test bench prepared
- NLC-oriented LSTFE-1 chip received, but basic design flaw precluded testing

Current Status

- Test-bench control system completed
- Cold-technology-oriented LSTFE-2 designed & fabricated; tests beginning
- Long-ladder assembly under construction
- Back-end (digital) architecture designed and tested

The SCIPP/UCSC ILC HARDWARE GROUP

Faculty/Senior

Post-Docs

Students

Alex Grillo Hartmut Sadrozinski Bruce Schumm Abe Seiden

Gavin Nesom Jurgen Kroseberg Michael Young Kunal Arya (Computer Eng.

Lead Engineer: Ned Spencer

Technical Staff: Max Wilder, Forest Martinez-McKinney

The Gossamer Tracker

Ideas:

- Long ladders → substantially limit electronics readout and associated support
- Thin inner detector layers
- Exploit duty cycle → eliminate need for active cooling

Competitive with gaseous tracking over full range of momenta

Also: forward region...

THE LSTFE-2 CHIP

Long shaping-time front end suppresses 1/f noise, allowing for long-ladder readout

Power cycling should reduce I R heating by close to x100

Analog measurement via time-over-threshold (TOT) from low-threshold "readout" comparator.

Redesigned relative to LSTFE-1 to accommodate long pulse train and exploit more relaxed (5 Hz) duty cycle.

Submitted to TSMC 0.25µm mixed-signal RF process; received August 11 (5 weeks late)

SILICON TRACKER FRONT-END ARCHITECTURE

** Profile: "nlc_chan-transient" [C:\Projects\NLC\preampTSMCmodels\nlc_chan-nlc_chan-transient.sim] Date/Time run: 01/02/04 14:15:19 Temperature: 27.0

SIMULATED PERFORMANCE FOR 167cm LADDER

Efficiency and Occupancy as a function of high threshold

Resolution as a function of low threshold

Calibration Step (mV)

10

DIGITAL ARCHITECTURE: FPGA DEVELOPMENT

Digital logic should perform basic zero suppression (intrinsic data rate for entire tracker would be approximately 50 GHz), but must retain nearest-neighbor information for accurate centroid.

Status of Back-End Architecture Development

- First-pass digital strategy worked out
- FPGA code developed for 8-channel system
- Simulated data stream (including noise and detector background) injected and processed in simulation
- Data rates estimated

Proposed LSTFE Back-End Architecture

Proposed LSTFE Back-End Architecture (cont'd)

Per 128 Channel Chip: 1 Master FIFO reads out 32 local FIFO's

Store in Master FIFO essentially complete by end of ~1ms beam spill

DIGITAL ARCHITECTURE VERIFICATION

ModelSim package permits realistic simulation of FPGA code (for now, up to signal propagation delay)

Simulate detector background and noise rates for 500 GeV running, as a function of readout threshold.

Per 128 channel chip ~ 7 kbit per spill → 35 kbit/second

For entire long shaping-time tracker ~ 0.5 GHz data rate (x100 data rate suppression)

LONG LADDER CONSTRUCTION

Progress on key fronts:

- Front-end electronics development LSTFE-2 chip (cold-rf optimization) designed and testing underway
- Digital architecture Proposed back-end architecture developed and verified; raw data rates acceptable (0.5 GHz)
- Ladder construction underway

Substantial work remains in all these areas; working towards testbeam run in late 2006