Studies of the Forward Chamber in the Large Detector Concept

Lee Sawyer

Louisiana Tech University

18 Aug 2005

Forward Tracking and the TPC

- Questions to be Considered at Snowmass2005:
 - How important is the FCH behind the TPC?
 - Do we need stand-alone tracking capability in there, or is a simple device which adds one or two hits sufficient?
 - Which technology is optimal for the FCH?
- Some FCH Proposals
 - Something standalone
 Strawtubes, Scintillating Fibers?
 - Something that integrates with the rest of the Silicon detectors → SiFCH
 - Something that "replicates" the TPC endplate →GEM-FCH

- Just part of the ECAL

Considerations

- Terrible location => services for VTX, SIT, and TPC, readout cables
- Impact on other systems => Mount to TPC or ECAL?
- Cost Cost Cost

Forward Tracking Performance in the TESLA TDR

Upstream Material Profile in Radiation Lengths

Momentum resolution for 250 GeV muons as a function of polar angle

Polar Angle resolution for 200 GeV muons

- Momentum resolution Goal is 5x10⁻⁵ (GeV/c)⁻¹ overall
- Polar angle resolution goal of $< 5 \mu rad$ down to $\theta \approx 100 \text{ mrad}$

Fast Simulation Studies With SGV

- Simulation a Grande Vitesse
- SGV is a fast simulation that reproduces parameterized detector hits, returns track covariance matrix
 - Developed by Mikael Berggren (LPNHE)
 - Used in DELPHI, TELSA/SiLC studies
 - Advantages: Very fast, flexible detector geometry, tracking hits, calorimeter clusters
 - Geriatric friendly: Written in FORTRAN, uses HBOOK
 - Disadvantages: Not integrated with the "standard" LC software development

Single Particle Scans

- Studied electrons in the angular coverage of the FCH (7°<θ<24°)
- Scanned in both momentum and angle
 - Momentum error taken from cov matrix
- Compared three detector configurations

- No FCH

___ No FCH

- 3 layers of FCH

___ FCH with 3 layers

- 10 layers of FCH

___ FCH with 10 layers

Lee Sawyer / Louisiana Tech University

- Used FCH point resolution of 100 μm
 - Variations in σ_{FCH} not visible at this level of simulation

Momentum Tracking Error

•Improvement in momentum error, even at large angles

Momentum Resolution

For comparison, the TESLA TDR gives $\Delta(1/p) = 3.2 \times 10^{-4} \, (GeV/c)^{-1} \, for \, cos(\theta) = 0.9$ using full BRAHMS simulation

No FCH

___ FCH with 3 layers

___ FCH with 10 layers

Angular Separation

- Looked at the angular separation between the "reconstructed" track and calorimeter cluster
- Little difference seen between the 3 configurations
 - Probably requires a detailed simulation

Running MOKKA

- Next step is to run detailed simulations using Mokka
- Have already generated small datasets at LA Tech with D10 and LDC00 geometries
- Have not installed the latest version of MARLIN/MarlinReco
 - Began analysis with org.lcsim but need compact detector description for LDC

Update on GEM R/D

- Two 10 cm prototype chambers built and tested
- These are prototypes for the QWEAK chambers to be built next year
- We will receive part of the 30 cm GEM foils made by 3M
 - Some Q/A questions are still to be resolved
- 30 cm charge collector will be designed this fall and built at CERN
- Main problem is the HELIX readout chip
 - Problems with programming, ground loops

Some Conclusions

- The need for an FCH to improve momentum resolution at intermediate to forward angles probably established
 - Fast simulation studies reproduce earlier SGV, BRAHMS studies
 - Still need to understand if this detector matters when optimized against particle flow
 - Studies do not establish a technology
 - Point resolution of around 100 mm probably sufficient
 - Number of layer depends on necessity of standalone tracking capability
- Detailed studies using MOKKA beginning
 - Will try to test running on LONI computing grid
- Detector R/D also continuing
 - Expect to have solution to HELIX problems within the next month
 - Also exploring other r/o chips