

Prototype Development and Simulation Studies for a GEM Based TPC

Martin Killenberg

Sven Lotze Joachim Mnich Astrid Münnich Stefan Roth Michael Weber

III. Physikalisches Institut B

http://www.physik.rwth-aachen.de/group/IIIphys/TPC/

2005 International Linear Collider Physics and Detector Workshop August 2005, Snowmass, Colorado

Overview

- Test Setup
 - TPC Prototype
 - Hodoscope
- "New" Readout Electronics
 - Preamplifiers
 - ADCs
- Simulation Studies
 - Modular Structure
 - Comparison with Measurements

TPC Prototype

- 5T Magnet at DESY Hamburg
 ⇒ 260 mm diameter
- Triple GEM readout is used
- Drift distance = 260 mm
- Maximum drift field = 1000 $\frac{V}{cm}$
- Materials with low density

TPC Prototype: Operation

Cosmic Muon

Stable operation: 2 weeks without problems

Readout using old ALEPH electronics

- "Slow" preamplifiers for wires
- 12.5 MHz ADCs

TPC Prototype: Hodoscope Test Stand

Hodoscope resolution: 60 μ m

TPC Prototype: Single Point Resolution

Compare points from TPC with hodoscope tracks:

Goal:

Develop new readout electronics with 512 channels for our TPC

Requirements:

- Fast preamplifiers to take advantage of fast GEM signals
- Fast ADCs to match the preamplifier speed
- Fast data acquisition to allow reasonable operation in test beams
- Small preamplifiers to allow compact readout design with small pads

"New" Electronics: Preamplifier

Preshape 32

- Predecessor of Premux & APV (CMS silicon tracker)
- 32 channel preamplifier/shaper with parallel In/Out
- Nominal peaking time: 45ns
- Needs discrete 32 channel cable driver to get signal to reasonable distance

Preamplifier

The preshape is bonded onto a small board to perform tests. \Rightarrow Possibility to reduce size for a readout with small pads.

"New" Electronics: Pad Plane

- 1120 Pads \Rightarrow flexible configuration of 500 active channels
- 1.27x6.985 mm² Pads
- Connectors for Preshapes directly on the back

Front

Back

"New" Electronics: First Events

- 192 preamplifier channels in operation
- First events from prototype
- Currently read out with ALEPH ADCs
- 448 channels until test beam in October

Electronics: ADCs

Three ADC candidates:

	Required	MPI		DESY
Origin		Munich	Canada	Hamburg
(Experiment)		(Crystal Ball)	(KOPIO)	(H1)
System	VME	VME	VME	VME
Resolution [bit]	>=10	10	10	8 (non linear)
Frequency [MHz]	>=40	40	40	100
Memory [sample]		1000	1000	4000
channels/module	>=16	32	48	16

Simulation Studies

Goals: Study influence of

- Electric and magnetic fields
- Ion backdrift
- Pad response, pad geometry
- GEM settings

on the spatial resolution of a TPC. 4 Modules:

- 1. Primary ionization
- 2. Drift of electrons
- 3. Gas amplification with GEMs
- 4. Electronics (shaper, ADC)

Primary Ionization:

- Randomly generate distance between clusters and number of electrons per cluster according to parametrization of distributions calculated by HEED.
- Place electrons on track (helix with magnetic field, straight line without)

Drift of Electrons:

Gaussian smearing in x, y and z according to parametrization of longitudinal and transverse diffusion calculated by MAGBOLTZ for the particular gas mixture.

Input from measurement:

- Detailed parameterization of charge transfer coefficients (collection, extraction, gain) as a function of GEM settings.
- Charge broadening between GEMs mainly determined by diffusion.
 - \implies Use diffusion from parametrized MAGBOLTZ calculations.

Simulation steps:

- Calculate number of electrons according to GEM settings.
- Apply smearing according to diffusion.
- Map electrons onto pads.

Simulation Step 4: Shaping and ADC

- Calculate center of gravity of electrons in pulse.
- Apply shape smearing of electronics (currently gauss).
- Fill the electrons into time bins.
- Map charge per time bin to the ADC range.

Single Point Resolution :

RWITH AACHEN

RWITH AACHEN

Simulation: Particle Identifi cation

18

ROOT based version of the simulation package is on the workshop DVD.

New LCIO based version will soon be available at

http://www.physik.rwth-aachen.de/ group/IIIphys/TPC/en/software/

Conclusions and Outlook

Prototype ready for test beam in October:

- Detailed measurements of field homogeneity and spatial resolution
- Test new readout electronics
- Check simulation predictions

Questions for the ILC TPC:

Requirements for optimal spatial resolution?

- Readout frequency?
- Pad size and shape?
- GEM settings?