Luminosity spectrum extraction

Stewart T. Boogert University College London

Introduction

- Luminosity, average beam energy, luminosity spectrum all essential input for the physics studies at linear collider
 - Top physics at threshold
 - Higgs-strahlung
 - Higgs Yukawa coupling
 - SUSY threshold
- Many processes required for complete determination of systematic errors
 - Bhabha scattering
 - Radiative returns
 - Up/downstream energy measurement

Luminosity spectrum

- Centre of mass energy variation, three main sources
 - Accelerator energy spread
 - Typically ~0.1%
 - Beamstrahlung
 - 0.7% at 350 GeV
 - 1.7% at 800 GeV
 - Initial state radiation (ISR)
 - Calculable to high precision in QED
 - Complicates measurement of Beamstrahlung and accelerator energy spread
 - Process dependence?
 - Impossible to completely factorize ISR from FSR in Bhabha scattering, no problem for heavy final states

Bhabha acolinearity

- Bhabha scattering to monitor dL/dE
 - $e^+e^- \rightarrow e^+e^-n(\gamma)$
 - High rate compared with top threshold rate
- Two approximate reconstruction methods
 - Only use angles of scattered electron and positron
 - Both based on single photon beamstrahlung
 - Frary-Miller

- are needed to see this pict
- K. Moenig

QuickTime™ and a TIFF (LZW) decompressor are needed to see this picture.

8/23/2005

Luminosity spectrum simulation

- Simulation
 - Accelerator simulation to define beam before collision
 - Distribution of particles in 6 dimensional phase space (position, angles & energy
 - Beamstrahlung input from
 - Guinea-Pig (collision dynamics simulation)
 - CIRCE (parameterization based on Guinea-Pig output)
 - Bhabha scattering based on BHWIDE, wide angle Bhabha scattering Monte Carlo
 - Lumi spectrum format
 - Histogram (distribution)
 - Discrete events (macro particles)
- Problems
 - Interface between Guinea-Pig and Monte Carlo generators

Extraction of luminosity spectrum

events

- Bhabha lumi-spectrum reconstruction performance
 - Reasonable given assumptions in x reconstruction
 - Definition of true luminosity spectrum problematic due to overlap of ISR and FSR in Bhabha scattering
 - Main differences between measured and true x at x~1
- Scatter plot of x_{recon} and x_{true}
 - Mainly diagonal contribution, good!
 - Degeneracy at large x
 - Mainly due to the single photon approximation
- Problem now
 - How to extract beamstrahlung and beam spread from the observable x
 - Two different methods being investigated
 - Unfolding (F. Poirer)
 - Fitting (SB, K. Moenig, E. Torrence)

8/23/2005

Beamstrahlung parameter extraction (old example)

CIRCE beamstrahlung (N-N_{def})/N_{def} parameterization -a₀+0.2 2.5 ···· a2+5.0 a₂+0.2 $f(x) = a_0 \delta(1-x) + a_1 x^{a_2} (1-x)^{a_3}$ Simulate Bhabha events with set of 1.5 different CIRCE parameters Create set of x_{recon} distributions for orthogonal set of a 0.5 • $a_0 = 0.5461 (+0.2)$ • a₁= normalization condition **ö**.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.98 x • a₂=20.3 (+0.5) • $a_3 = -0.6275 (+0.2)$ x km 500000 Entries Mean 0.979 $N_{pred}(a_0, a_2, a_3) = MC_{def} + \sum_{i} \frac{a_i - a_i^{def}}{\Delta a_i} (MC_i - MC_{def})$ RMS 0.03596 0.06038 Underflow Overflow χ^2 / ndf 1076 / 397 p0 0.6115 ± 0.001641 p1 19.92 ± 0.1663 10 sample p2 0.594 ± 0.003186 p3 0± 0 $-a_0=0.612 \pm 0.001 (0.5461)$ 10⁻³ $-a_2=19.39 \pm 0.17 (20.3)$ $-a_3 = -0.594 \pm 0.003 (-0.6275)$ 10⁻⁴ 0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98

8/23/2005

Accelerator simulation

- Integrated simulations of whole accelerator available
 - Linac (beam spread)
 - Beam delivery system (associated diagnostics, including beam energy spectrometer)
 - Guinea-pig collision simulation
 - Designed for fast beam feedback and general accelerator design simulation and optimisation
 - Simulation of first 600 bunches in the train
- Currently available
 - 500 GeV samples available
 - 350 GeV (top threshold) sample just generated (G. White)
 - Switch off some of the Linac + re-optimize beam delivery
- See G. White's webpage <u>http://hepwww.ph.qmul.ac.uk/lcdata/</u> for more details

New spectrum parameterizations (500 GeV)

- Beamstrahlung spectra CIRCE/Yokoya-Chen out of date
 - Machine physicsts are routinely producing new luminosity spectra
 - Fit to new data sets with existing parameterizations
- Fit function
 - Beta function (CIRCE) convoluted with Gaussian energy spread
- Simulation (see previous slide)
 - 500 GeV
 - Nominal cold ILC parameters
- Fit parameters

	CME	e beam	p beam
a0	0.337	0.533	0.543
a2	18.5 <mark>76</mark>	9.923	10.234
a 3	0.419	0.317	0.330
bs (%)	0.089	0.160	0.080

8/23/2005

350 GeV accelerator simulations

- 350 GeV ILC simulations now available
 - Requires re-optimization of the linac and beam delivery system
 - Thanks to G. White for producing data files!

	CME (500)	CME (350)
a0	0.337	0.307
a2	18.576	28.739
a3	0.419	0.319
bs (%)	0.089	0.096

- Differences between 350 and 500 GeV simulations
 - Only bunches between 200-300
- Use this parameterization to apply to Bhabha and top samples

Luminosity weighting

- Need to correctly luminosity weight events
 - Randomly sample number of collision events proportional to bunch luminosity
 - Bunch < 100</p>
 - $N_{sample} \propto L_{bunch} / L_{max}$
 - Bunch \geq 100
 - $N_{sample} \propto N_{train} / (600-100) L_{bunch} / L_{max}$
 - Use last 500 bunches as representative rest of bunch train
- Fit for spectrum improved
 - Beamstrahlung shape of course depends on collision geometry

	CME (500, L weighted)
a0	0.337
a2	18.5 76
a3	0.419
bs (%)	0.089

Energy spectrometry

- Measure the beam energy in dedicated beam line inserts
- Upstream of the interaction point
 - Measure average beam energy in clean environment
 - Basic design done and should be included in the accelerator CDR
- Downstream of the interaction point
 - Measure disrupted beam
 - Bunch by bunch measurement possible
 - Problems with accelerator backgrounds
- Other possible diagnostics which might be required
 - Beam energy spread monitor
 - Beam energy-z correlation

8/23/2005

Beam-line collision bias

- Monitor energy before, during and after collision
 - Upstream and downstream spectrometer measurements are biased from the collision energy
 - Effect appears to be reasonably large 2-3%
 - Appears to be correlated with collision geometry (at least in the vertical beam offset)
 - Check for 350 GeV sample
- Essential to measure absolute energy scale using physics events
 - Radiative returns
 - Z pair production
 - Other cross check processes?

8/23/2005

Other energy monitoring processes

- Radiative returns ($e^+e^- \rightarrow \mu^+\mu^-\gamma$)
 - Absolute energy scale
 - Calibrated to Z mass
 - Time required to accumulate statistics?
 - Detector systematics a problem (forward trackers)

- Z pair production ($e^+e^- \rightarrow ZZ$)
 - Cross check $<\sqrt{s}>$
 - Less statistics than radiative returns but possibly lower detector systematics

• Other possibilities see talk by E. Torrence in WG4

Problem overview

MC generator & physics analysis input

- Integrated ILC simulations
 - Luminosity files
 - Pre and post collision bunch files
 - Feedback related quantities
 - Ascii file containing, one line per file
 - Pre and post average beam & luminosity file average energies
 - Luminosity
 - Anything else?
- Luminosity weight luminosity events from each 600 bunch run
 - Matlab code writen and must included to create analysis file "on the fly"
 - C++ code to do the same job also available
 - Output file, large Guinea-pig luminosity ascii file
 - Bunch# event# e1 e2 x y z xp1 yp1 xp2 yp2
- Beam generator
 - Take luminosity weighted file and randomly sample beam four momenta from file
 - Generate from parameterizations

Summary

- Code to luminosity weight and sample from ILC integrated simulation done
 - Matlab version (for inclusion into Glen's code)
 - Standalone C++ for generating files inpedendently
- Started with beam generator
 - Takes luminosity weighted luminosity events from previous step
 - Randomly samples luminosity events for use by generator
 - Should be finished by the end of Snowmass
- Luminosity spectrum extraction
 - Using parameterizations and Bhabha acolinearity angle try to extract beamstrahlung parameters
 - Apply parameters true and measured parameters to physics processes to extract systematic uncertainty due to luminosity spectrum determination