BPM energy spectrometer

Stewart T. Boogert University College London

Overview

- Spectrometer essential diagnostic for ILC
 - 9 BPMs per spectrometer x 4 beam lines ~36 BPMs
 - Requirements different from Linac/BDS BPM requirements
 - Requires detailed design work now, for accelerator/detector CDR
- Talk outline
 - Spectrometer requirements
 - Spectrometer BPM requirements
 - Magnet questions
 - Other requirements
 - Quick overview of existing efforts
 - ATF nano BPMs
 - End station A chicane tests
 - Summary

Chicane spectrometer requirements

- Beam energy measurement requirement of 1 part in 10⁴
- Assume chicane as proposed by P and RA
 - 4 magnets
 - 5 mm maximum deflection
 - Bipolar operation
- Measurement time
 - Single bunch
 - Bunch train
 - 1 hour / 1 day
- Mode of operation effects BPM^{II} design
 - Operation of chicane (frequency of ramping)
 - Frequent return to low energy?
 - Essential design beam energies
 - 50, 175, 250 & 500 GeV
 - Move BPMs to null dipole signal
- Single bunch information useful for machine operation?

Stewart T. Boogert (BPM requirements for energy spectrometry)

Spectrometer BPM requirements

- Spectrometer BPM will probably set the most stringent requirements on BPM design
 - Aperture
 - Resolution
 - Dynamic range (1000:1)
 - Stability (intrinsic and electronics)
 - Accuracy
 - Calibration
 - Backgrounds
- Existing BPM designs are far from optimal for an energy spectrometer
 - Button and strip-line not seriously considered
 - ATF/ATF2 aperture
 - Reentrant resolution/stability?
 - Generic pill box cavity?
 - Cross coupling

- Machine
 - Bunch angle, position & charge jitter
 - Aperture
- Spectrometer
 - Movement range
 - Stray fields
 - Emittance dilution
- BPM
 - Resolution already achieved (See ATF results)
 - Scaling of resolution as function of cavity size
 - Design for stability (monopole rejection)

Magnet requirements/questions

- Factors which influence magnet design
 - Ramping strategy
 - Ability to continuously monitor field
- SC/Warm
 - Which type of magnet would provide the most stable, uniform field?
 - Which would be quicker to ramp?
 - Which is easier to map?
- Magnet imperfections
 - Could effect luminosity
 - Fringe fields
- Must start dialogue with magnet designers
 - Bret Parker present here ...

Background/Halo

- LEP spectrometer had problems
 - Possible source was SR
- Effect of halo on BPM position measurement
 - Message from BPM experts, cavities just monitor the centroid
 - Clear this does not contribute to luminosity but might pull energy measurement
- Background in the region of spectrometer
 - Main source in spectrometer?
 - Energy collimation
 - Betatron collimation region
 - SR from local bends
- Need simulation of nearby accelerator
 - BDSim or variants

8/23/2005

- Second order question, more basic issues need to be addressed first

Operation problems questions

- Mainly associated with ramping whilst trying to provide luminosity
- Orbit effects
 - Kicker and feedforward when ramping to remove beam orbit changes from spectrometer chicane
- Optical effects (simplistic)
 - What is there are focusing/defocusing effects at different chicane magnet settings
 - Possible to remove this too, tweaking down stream quads etc
- ESA tests can be used to try and answer some of these questions

Other requirements

- BPM position monitoring
 - Need to know BPM position to better than BPM stability
 - Large travel range ±5mm
- Mechanical stability, BPM and triplet movers
 - Good to be able to move all BPMs and triplets together
 - See LLNL space frame
- Dipole field monitoring
 - How to monitor integrated B.dl?
 - Low fields (for Z calibration) in dipole
- Careful monitoring of environmental conditions
 - Temperature
 - Electronics gain
 - Calibration tones
 - Stray fields

8/23/2005

- Ground stability/motion

ATF NanoBPM programme

- BINP BPMs (V. Vogel et al)
 - ~2cm diameter
 - Dipole selective waveguide couplers
 - 2 stage down-mixs electronics
- Triplet installed in the ATF extraction line
 - Mechanically stable LLNL "spaceframe"
 - Ability to move each BPM
 - Whole triplet together
- Triplet of ATF cavities installed down stream of BINP BPMs
 - Performance not as good
 - Cross coupling
 - Monopole mode rejection

8/23/2005

Stewart T. Boogert (BPM requirements for energy spectrometry)

LLNL Spaceframe and BPMs

8/23/2005

Stewart T. Boogert (BPM requirements for energy spectrometry)

Recent nano BPM results

- Resolution and stability measurements from BINP cavities
- Resolution
 - Long run 800 events ~ 10 minutes
 - σ **~ 24 nm**
 - Resolution for spectrometer achieved

- Stability
 - Measured drift over 2 hours
 - First 100 events used for calibration
 - Drift <120 nm peak to peak
 - RMS drift ~40nm over 2 hours
 - Stability already seems promising

Stewart T. Boogert (BPM requirements for energy spectrometry)

End station A programe

- Plans to test chicane ideas at ESA
 - Using old SLAC cavities
 - Test of chicane ideas and identification of possible problems
 - Test system of other general ILC and spectrometer specificBPM designs
 - New RF electronics
 - Resolution <1μm
- First tests in November 2005, Chicane tests 2006...

Snowmass 2nd week work/discussions

- Spectrometer
 - Single bunch resolution
 - Bunch train resolution
- Machine
 - Range of possible
 - Aperture
 - Position, angle, charge jitter
- Spectrometer-machine interaction
 - Chicane operation
 - Magnet ramping
 - Possible loss of luminosity?

- BPMs
 - Resolution
 - 100 nm to 1 μm
 - Dynamic range
 - 100 μ m to 1mm
 - Stability (thermal, etc)
 - Common mode rejection
 - Mechanical symmetry
 - 200 nm (to 2 μm) many hours/days
 - Cavity Q
 - Implications for single bunch measurement
 - Is it possible to extract single bunch information with large Q
 - Tests at ESA and ATF to verify
 this
 - Other
 - Reference cavities
 - Mechanics/size

My design (to stimulate discussion)

- PT + RA Chicane
 - ~18m drift from analyzing bends
 - ~2m drift for BPMs
 - Pre/mid/post chicane triplets in LLNL type structures
- BPMs
 - Cylindrical cavities (scaled from existing cylindrical designs)
 - ~4-7 cm diameter (GG2?)
 - Resolution ~50-100nm
- BPM stability/alignment
 - Oxford STAFF stability monitoring system
- Magnets
 - Warm (quicker to ramp?)
 - Integrated magnetic field probes

Summary

- Still more questions than answers here at Snowmass!
- Spectrometer geometry/layout
 - Is the existing design optimal? (Z to 1TeV running?)
- Accelerator
 - Is the existing chicane acceptable for the machine?
 - Sets limits on dipole magnet requirements (quadrapole, sextapole contributions)
 - More specific information on the beam at chicane location
- BPM
 - Resolution ~100nm, stability ~200nm quite possible
 - Scale existing cavity designs for spectrometer
 - High gain electronics and readout readily available
- Operation
 - Calibration with Z running
 - Frequency. How long can the calibration with Z be maintained
 - Systematic effects using ~50GeV calibration up at 500 GeV?
 - Magnet ramping
- Magnets
 - Must begin discussion with magnet designers