Electron ID in BeamCal and SUSY capabilities

preliminary

Philip Bambade
LAL-Orsay
Snowmass 2005

- 1. BeamCal ELID and segmentation study A. Elagin, JINR, Dubna
- 2. Effect of crossing-angle on ELID V. Drugakov, U. of Minsk
- 3. Effect of crossing-angle on stau search Z. Zhang, LAL-Orsay

Beam Calorimeter main parameters

✓ beam diagnostic

✓ identification and measurement of the high energy particles

<u>Diamond-tungsten</u>	
Distance from the IP, cm	370
$\theta_{\min} - \theta_{\max}$, mrad	4 – 28
R _{min} – R _{max} , cm	1.5 – 10
Sensor thickness, mm	0.5
Absorber thickness, mm	3.5
Number of layers	30
X ₀ , mm	4
R _{molier} , mm	10

Technologies for the BeamCal:

- 1) Silicon-tungsten or diamond-tungsten sandwich calorimeter
- 2) PbWO4 crystal

Particle identification in the BeamCal Electron Finder from V. Drugakov

- Use 10 events to define $\leq E_{bg} \geq$ and RMS_{Ebg} for each pad.
- For signal event subtract $\langle E_{bg} \rangle$ from E_{dep} for each pad. Keep pads with remaining E_{dep} larger than $5 \cdot RMS_{Ebg}$.
- Search along each segment: cluster is found if there are more than 7 pads in the segment and more than 4 pads within at least one neighbor segment.

Particle identification in the BeamCal

Electron Finder from V. Drugakov

Particle identification efficiency electrons 200 GeV

Summary

- Complete simulation chain for BeamCal exist:
 - GEANT4 based simulation (A. Elagin)
 (crossing angle options are available, implemented by V.Drugakov)
 - eFinder for electron identification (V. Drugakov)
- 5 mm segmentation is the best for electron identification at small radii
- 8 mm is not too bad
- 10 mm segmentation gives 100% efficiency for R > 55 mm

Pair energy in Beamcal (1*=4m, B=4T) TESLA ILC-nom ILC-lowQ ILC-hilum

ILC – nom 20 mrad with idealised DID

Philip Bambade

Snowmass 2005 - miniWG on forward region

Features of simulation and comparison

- GEANT4 instead of GEANT3 and new algorithm
- averaging over rings instead cells, with 10000 events in each cell
- algorithm tuned with common energy threshold and fake rate (5%) for head-on and 20 mrad (may not be fully optimal)
- electron energies: 100, 125, 150, 175, 200, 225, 250 GeV
- pairs from 500 bunch crossings are simulated for head-on and 20mrad
- for head-on, ring 1 at 15 mm
- for 20 mrad, ring 1 at 20 mm and suppose blind area for : -15 degree $< \phi < 15$ degree this blind area is excluded from the efficiency calculation

Comparison of veto eff. in 4 first rings

forward region

20 mrad + DID θ ~ 11 mrad ⇔ head-on θ ~ 6 mrad

 $\theta \sim 11.5 \text{ mrad}$

 $\theta \sim 6 \text{ mrad}$

 $\theta \sim 10 \text{ mrad}$

This first look $\rightarrow \Delta m$ (head-on) $\sim 1.8 \times \Delta m$ (20 mrad)

250 GeV efficiencies

200 GeV efficiencies

ring	head-on	20 mrad & DID	head-on	20 mrad & DID
0	0.9620 ± 0.0019	0.8278 ± 0.0039	0.8568 ± 0.0035	0.7386 ± 0.0046
1	0.9991 ± 0.0003	0.9495 ± 0.0023	0.9924 ± 0.0009	0.8765 ± 0.0034
2	0.9996 ± 0.0002	0.9868 ± 0.0012	0.9992 ± 0.0003	0.9492 ± 0.0023
3	0.9996 ± 0.0002	0.9978 ± 0.0005	0.9992 ± 0.0003	0.9837 ± 0.0013
4	0.9997 ± 0.0002	0.9997 ± 0.0002	0.9997 ± 0.0002	0.9957 ± 0.0007
5	0.9995 ± 0.0002	0.9998 ± 0.0001	0.9996 ± 0.0002	0.9988 ± 0.0004
6	0.9999 ± 0.0001	0.9998 ± 0.0001	0.9999 ± 0.0001	0.9996 ± 0.0002
7	0.9996 ± 0.0002	0.9998 ± 0.0001	0.9998 ± 0.0001	0.9996 ± 0.0002
8	0.9999 ± 0.0001	0.9997 ± 0.0002	0.9999 ± 0.0001	0.9997 ± 0.0002

Conclusions and further studies

- Preliminary results show veto efficiencies > 99.9% beyond a larger enough radii R_{MIN} in the BeamCal
- For 20 mrad crossing-angle, R_{MIN} is ~ 1.5 cm larger than for head-on; this corresponds to reachable mass differences between the lightest sleptons and the LSP (in SUSY scenarios with highly degenerate mass spectra) which are larger by ~ factor 1.8 (e.g. 5 GeV \rightarrow 9 GeV)
- Significant difference seen between different ILC beam parameter sets: "low Q" best... will be worked on more
- Present results statistics limited at the 0.0001 level
- Systematics (e.g. hadronic content) also to be worked on

Impact of Larger Uninstrumented Region in BeamCal with 20mrad X-angle

New addition to an earlier study

"Experimental Implications for a Linear Collider of the SUSY Dark Matter Scenario"

by

P. Bambade, M. Berggren, F. Richard, Z. Zhang

[hep-ph/0406010] & contribution to LCWS'04

zhangzg@lal.in2p3.fr

Snowmass, Aug.14-27, 2005

Reminder of That Earlier Study

Addresses detection issues for stau mainly for benchmark point D both in head-on collisions and collisions with a 10 mrad half X-angle

Battaglia-De Roeck-Ellis-Gianatti-Olive-Pape, hep-ph/0306219

 χ stau (s τ) annihilation

Important when

 $\Delta M = m_{s\tau} - m_{\chi}$ is small (5 GeV for point D)

→ The precision on SUSY DM prediction depends on ΔM

Need to measure $m_{s\tau}$ and m_{χ} with best possible precision

Zhiqing Zhang (LAL, Orsay)

Snowmass, Aug.14-27, 2005

2

Main Challenges for the Stau Analyses

 $e^+e^- \rightarrow stau^+ stau^- \rightarrow \chi^0 \tau^+ \chi^0 \tau^-$

Cross sections: 10fb @ 500GeV, 4.6fb @ 442GeV

- Missing energy and soft final state
 - -> Additional missing energies from neutrinos in tau decay
 - → Final state particles very soft: due to small ∆M<10GeV & little Lorentz boost</p>
- SM backgrounds are many orders of magnitude larger
 - → Need very efficient veto at low angles
- Additional complication if crossing-angle collisions

Low Angle Veto in Head-on Collisions

Angular distribution of the spectator e from ee →ee ττ

Total $\sigma \sim 0.43 \times 10^6$ fb of which 3/4 with both e's staying in the beampipe corresponding to the peak at zero in the inset

Analysis cuts reject most of the background

An ideal veto with

 $P_{T,min}$ >0.8GeV is sufficient to suppress all remaining $\gamma\gamma$ \rightarrow $\tau\tau$ background events except those with energetic μ/π at low angles

Remaining Background in Cross-Angle Mode

10mrad half crossing angle

For an incoming beam hole of r=1.2cm the probability for a spectator e+/e- to enter the hole is 10-3.

Remaining background events correspond (mainly) to those with e+/e- goes into the incoming beam hole.

Additional cuts remove essentially all these events.

A price to pay however: 25% efficiency reduction e.g. for benchmark point D @ Ecm=442GeV from ~5.7% to ~4.3%

Zhiqing Zhang (LAL, Orsay)

Snowmass, Aug.14-27, 2005

New Analysis with Larger Inefficient Region

- If beam hole radius increases from 1.2cm to 1.5cm
- 2) If additional blind region

Question:

What's the consequence for the stau analysis?

Answer:

The additional cuts need to be modified introducing larger inefficiency from 25% to 30% w.r.t. the head-on analysis

Zhiqing Zhang (LAL, Orsay)

Snowmass, Aug.14-27, 2005

7

Luminosity, E_{CM} and efficiency optimization benchmark point D' with $\Delta m_{\tilde{\tau}-\chi} = 5$ GeV $\tilde{\tau}$ mass precision wrt efficiency effect from 2nd hole only

Relative 7 mass precision from cross-section measurements near the production threshold with negligible background

Summary

It seems that the horizontal blind regions in between the two beam holes has only a small effect on the stau analysis

Further improvements still to come:

- a) replace the ideal veto ($P_T > 0.8 GeV$) with more realistic efficiency tables
- b) use large SM background samples