Comparison of BeamCal electron veto performance in head-on and 20 mrad

preliminary

Philip Bambade LAL-Orsay

Snowmass 2005

Based on on-going work by Vladimir Drugakov, U. of Minsk

Pair energy in Beamcal (l*=4m, B=4T)TESLAILC - nomILC - lowQ

T. Maruyama

[GeV/cell]

Flux

Energy

ILC – nom 20 mrad with idealised DID

Philip Bambade

Snowmass 2005 - miniWG on forward region

Features of simulation and comparison

- GEANT4 instead of GEANT3 and new algorithm
- averaging over rings instead with 10000 events in each
- algorithm tuned with common energy threshold and fake rate (5%) for head-on and 20 mrad (may not be fully optimal)
- electron energies: 100, 125, 150, 175, 200, 225, 250 GeV
- pairs from 500 bunch crossings are simulated for head-on and 20mrad

 for 20 mrad, suppose blind area for : -15 degree < φ < 15 degree this blind area is excluded from the efficiency calculation

Snowmass 2005 - miniWG on forward region

Comparison of veto eff. in 4 first ringsRing 1234

20 mrad ILC nom

$\begin{array}{ll} 20 \text{ mrad} + \text{DID} & \theta \sim 11 \text{ mrad} \\ \Leftrightarrow & \text{head-on} & \theta \sim 7.5 \text{ mrad} \end{array}$

 $\theta \sim 11.5 \text{ mrad}$

 $\theta \sim 7.5 \text{ mrad}$

$\theta \sim 10 \text{ mrad}$

This first look $\rightarrow \Delta m$ (head-on) ~ 1.5 × Δm (20 mrad)

Philip Bambade

Snowmass 2005 - miniWG on forward region

250 GeV efficiencies

200 GeV efficiencies

ring	head-on	20 mrad & DID	head-on	20 mrad & DID
0	0.9620 ± 0.0019	0.8278 ± 0.0039	0.8568 ± 0.0035	0.7386 ± 0.0046
1	0.9991 ± 0.0003	0.9495 ± 0.0023	0.9924 ± 0.0009	0.8765 ± 0.0034
2	0.9996 ± 0.0002	0.9868 ± 0.0012	0.9992 ± 0.0003	0.9492 ± 0.0023
3	0.9996 ± 0.0002	0.9978 ± 0.0005	0.9992 ± 0.0003	0.9837 ± 0.0013
4	0.9997 ± 0.0002	0.9997 ± 0.0002	0.9997 ± 0.0002	0.9957 ± 0.0007
5	0.9995 ± 0.0002	0.9998 ± 0.0001	0.9996 ± 0.0002	0.9988 ± 0.0004
6	0.9999 ± 0.0001	0.9998 ± 0.0001	0.9999 ± 0.0001	0.9996 ± 0.0002
7	0.9996 ± 0.0002	0.9998 ± 0.0001	0.9998 ± 0.0001	0.9996 ± 0.0002
8	0.9999 ± 0.0001	0.9997 ± 0.0002	0.9999 ± 0.0001	0.9997 ± 0.0002

Conclusions and questions

- Preliminary results show veto efficiencies > 99.9% beyond a larger enough radii R_{MIN} in the BeamCal
- For 20 mrad crossing-angle, R_{MIN} is ~ 1cm larger than for head-on; this corresponds to reachable mass differences between the lightest sleptons and the LSP (in SUSY scenarios with highly degenerate mass spectra) which are larger by ~ factor 1.5 (e.g. 5 GeV \rightarrow 7.5 GeV)
- Significant difference seen between different ILC beam parameter sets: "low Q" best... will be worked on more
- Present results statistics limited at the 0.0001 level
- Systematics (e.g. hadronic content) also to be worked on

Philip Bambade

Snowmass 2005 - miniWG on forward region