Instrumentation of the Very Forward Region of a Linear Collider Detector

Wolfgang Lohmann, DESY

Functions of the very Forward Detectors

- Measurement of the Luminosity with precision O(<10⁻³) using Bhabha scattering (see talk by Halina)
- Fast Beam Diagnostics
- LumiCal: $26 < \theta < 82 \text{ mrad}$ BeamCal: $4 < \theta < 28 \text{ mrad}$ PhotoCal: $100 < \theta < 400 \mu \text{rad}$

- Detection of electrons and photons at small polar anglesimportant for searches (see talk by Philip&Vladimir
- •Shielding of the inner Detectors

•Measurement of the Luminosity (LumiCal)

Gauge Process: $e^+e^- \longrightarrow e^+e^-(\gamma)$

Goal: <10⁻³ Precision

Physics Case: Giga-Z ,Two Fermion Cross Sections at High Energy, e⁺e⁻ ----- W⁺W⁻

Technology: Si-W Sandwich Calorimeter

MC Simulations

Optimisation of Shape and Segmentation, Key Requirements on the Design

Requirements on the Mechanical Design

Concept for the Mechanical Frame

Performance Simulations for $e^+e^- \longrightarrow e^+e^-(\gamma)$

Simulation: Bhwide(Bhabha)+CIRCE(Beamstrahlung)+beamspread

Event selection: acceptance, energy balance, azimuthal and angular symmetry.

$$< X >= \frac{\sum X_i W_i}{\sum W_i} W_i = \max\{0, [const(E_{beam}) + \ln(\frac{E_i}{E_T})]$$

$$c \ (\theta)(rad)$$

$$x = 10$$

$$0.3$$

$$0.275$$

$$0.25$$

$$0.25$$

•More in the talks by Halina Abramowicz

4

X- angle background

Number of Bhabha events as a function of the inner Radius of LumiCal

using serpentine field

Background from beamstrahlung

•Fast Beam Diagnostics (BeamCal and PhotoCal)

• direct Photons for θ < 200 μ rad

e+

Zero crossing

angle

Ω

e⁻

GeV: 1000

100

 Ω

0.1

 e_{-}

Beam Parameter Determination with BeamCal

Observables

total energy first radial moment thrust value angular spread L/R, U/D F/B asymmetries

Quantity	Nominal Value	Precision			
σχ	553 nm	1.2 nm			
σу	5.0 nm	0.1 nm			
σz	300 µm	4.3 μm			
Δy	0	0.4 nm			

$$\int s = 500 \text{ GeV}$$

Head-on or 2 mrad

Beam Parameter Determination with BeamCal

Observables

total energy first radial moment thrust value angular spread L/R, U/D F/B asymmetries

Quantity	Nominal Value	Precision			
σχ	553 nm	4.8nm			
σу	5.0 nm	0.1 nm			
σz	300 µm	11.5 µm			
Δy	0	2.0nm			

20 mrad crossing angle

Also simultaneous determination of several beam parameter is feasible, but: Correlations! Analysis in preparation

PRELIMINARY!

and with PhotoCal

Photons from Beamstrahlung

Technologies for the BeamCal:

Radiation HardFastCompact

Heavy crystals

W-Diamond sandwich

Detection of High Energy Electrons and Photons

√s = 500 GeV

Single Electrons of 50, 100 and 250 GeV, detection efficiency as a function of R ('high background region') (talk by V. Drugakov and P. Bambade)

Detection efficiency as a function of the pad-size (Talk by A. Elagin)

Message: Electrons can be detected!

Detection of High Energy Electrons and Photons

Realistic beam simulation √s = 500 GeV

Efficiency to identify energetic electrons and photons (E > 200 GeV)

Sensor prototyping, Crystals

Light Yield from direct coupling

Similar results for lead glass Crystals (Cerenkov light !)

Sensor prototyping, Diamonds

May,August/2004 test beams CERN PS Hadron beam – 3,5 GeV 2 operation modes: Slow extraction ~10⁵⁻10⁶ / s fast extraction ~10⁵⁻10⁷ / ~10ns (Wide range intensities) Diamond samples (CVD): - Freiburg - GPI (Moscow)

- Element6

March Marker

Diamond Sensor Performance

Linearity Studies with High Intensities (PS fast beam extraction) 10⁵ particles/10 ns

Response to mip

Univ. of Colorado, Boulder, AGH Univ., INP & Jagiell. Univ. Cracow, JINR, Dubna, NCPHEP, Minsk, FZU, Prague, IHEP, Protvino, TAU, Tel Aviv, DESY, Zeuthen

Workshop on the Instrumentation of the Very Forward Region of the ILC Detector Tel Aviv, Sept. 15.-20. 2005. http://alzt.tau.ac.il/~fcal/

Summary

- Many (and promising) results in simulations/design studies
- Concept for a Luminometer for small crossing angle is advanced, 20 mrad needs a different design
- Mechanics design work ongoing
- calorimeters in the very forward region deliver very valuable information about beam parameters
- High energy electron detection down to small polar angles is feasible with compact and fine segmented calorimeters; easier for small crossing angle
- Studies with sensors started- needs more effort
- Prototype tests mandatory
- Remarks
- The instrumentation of the forward region is relatively independent of the detector concept,

Backup Slides

Shower LEAKAGE in old (TDR) and new LumiCal design

Shower in LAT (TDR design)

LAT shower example

Only photons (blue) and electrons (red) over 5 MeV are displayed

QUAD

QUAD

November 13, 2002

L Suszycki: Luminosity....

Diamond performance as function of the absorbed dose

Linearity of a heavy gas calorimeter (IHEP testbeam)

Depositions on the calorimter frontface

Mean helix parameter

	Headon	20mrad										
BeamPar	MPI resolution	MPI resolution	σχ	σχ'	σу	σу'	σz	σz'	off x	off y	w y	N
σx (ave)	26.789	20.471	1									
σx (diff)	11.201	16.615	0.720	1								
σy (ave)	0.893	2.196	-0.182	-0.271	1							
σy (diff)	1.648	1.839	-0.520	-0.369	0.700	1						
σz (ave)	13.018	17.781	0.290	0.101	0.852	0.441	1					
σz (diff)	18.780	14.747	-0.032	-0.527	0.080	-0.143	-0.101	1				
Beam offset x	5.918	6.652	0.004	-0.488	0.127	-0.125	-0.036	0.887	1			
Beam offset y	0.536	6.767	0.414	0.237	-0.803	-0.927	-0.577	0.168	0.144	1		
Vertical waist shift	327.312	159.172	-0.496	0.434	0.901	0.713	0.623	0.017	-0.016	-0.748	1	
N per Bunch (ave)	0.109	0.080	0.581	0.316	0.619	0.016	0.869	0.039	0.056	-0.161	0.395	1
N per Bunch (diff)	0.043	0.054	0.481	0.631	-0.048	-0.119	0.066	0.149	0.018	0.030	-0.209	0.275