Marlin Reco A Marlin Based Reconstruction

Steve Aplin, DESY ILC Workshop, Snowmass August 17, 2005

Outline

- Overview
- Reconstruction Processors
- Utilities
- PFlow
- Initial results
- Plans
- Where to get it

Overview

- MarlinReco is a suite of Marlin processors which aims to provide full reconstruction for detector concept studies
- Using Marlin provides a well defined modularity
- Consequently this means it is possible to use it seamlessly with other Marlin processors
 - e.g. MAGIC a clustering algorithm written by C. Ainsley

Overview

- MarlinReco currently provides
 - Digitisation
 - TPC Tracking
 - Clustering algorithms
 - Event Properties
 - PFlow algorithms
 - Cheaters
 - these are implemented to enable "Perfect PFlow" studies and to cover area of reconstruction not yet implemented, e.g. forward tracking

Overview

Common API

LCIO

Uses LCIO as both transient and persistent data format

GEAR

- Geometric input is implemented using the GEAR API
- This makes MarlinReco independent of the way in which the geometry is defined
- particularly important for test beam studies (Real Data)

For the available MarlinReco Processors care has been taken to ensure algorithms are geometry independent – this allows MarlinReco to be applied to other Detector concepts

Implementation

- Implemented as a package under Marlin v.0.9.1
- Intended to take over from Brahms for optimisation studies
- MarlinReco is able to run under both Linux and Windows

Digitisation

TPC

 simple Gaussian smearing approach with a parameterised z dependence of the r-phi point resolution

Calorimeter

- Calibration coefficients are used though no smearing is yet implemented, possibility to perform digitisation using user defined thresholds
- Ganging is provided to investigate different granularity

Silicon Detectors

Under development

Tracking

- Full track finding and fitting algorithms taken from ALEPH and DELPHI optimised for TPC
 - Track finding is based on out in search, using Circle Fit to build reference tracks
 - These are then passed to a Kalman Filter in order to take scattering within the material into account for the final fit
 - Output: LCIO track collection with full covariance matrix
- Track Cheater
 - Uses MC to generate road along which hits are taken, these are then fitted with a helix hypothesis
 - Output: LCIO track collection

Clustering

- Trackwise calorimeter clustering exploiting the imaging capabilities of highly granular calorimeters
 - Algorithm focuses on spatial information (no amplitude information is used at the stage of clustering), applicable to both digital and analogue calorimeters
 - Minimal dependence on detector geometry, can be used for detector optimization studies
 - Output: LCIO collection of Clusters. Each cluster is attributed with the following characteristics:
 - center-of-gravity (as position estimate)
 - vector of the main principle axis of inertia tensor (as direction estimate)
 - total energy

Event Properties and Utilities

- ThrustReconstruction (T. Kraemer)
 - Tasso algorithm calculates the principle thrust value and axis
 - Jetnet algorithm calculates the principle thrust value and axis as well as the major and minor thrust values and axis
- Sphere (P. Krstonic)
 - Calculates the sphericity, aplanarity, C and D event parameters
- SatoruJetFinder (J. Samson)
 - A universal jetfinder module developed by Satoru Yamashita for OPAL
- Utility and Helper classes
 - These reside parallel to MarlinReco currently implemented as a separate Marlin package named MarlinUtil
 - e.g. helix fitter, clustershape (O. Wendt)

CEDViewer

- CED developed by Alexi Zhelezov
 - Based on GLUT OpenGL
 - Two Marlin Processors available
 - CEDViewer
 - GenericViewer
 - Displays MC objects; simulated and reconstructed hits; reconstructed track and clusters
 - Very useful in the early stages of algorithm development

CEDViewer

PFlow

- PFA is implemented as a dedicated processor
 - Track-cluster matching
 - Estimation of four-momenta of PF objects
 - charged objects (clusters with associated tracks): 4momentum is evaluated based on tracking information
 - neutral particles (calorimeter clusters with no associated tracks): 4-momentum is evaluated using calorimeter information
 - Particle ID
 - currently based on calorimeter cluster shape analysis (fraction of energy in ECAL, longitudinal profile, transverse profile) and amplitude analysis (test of MIP hypothesis)

ttbar events for LDC and SID

No cheaters, only full reconstruction

Initial Results

- e+e- -> Z -> qqbar using full reconstruction
- see talks by Alexei Raspereza

Plans

- Immediate Plans
 - Extend tracking into the vertex detector
 - Neutral Vertex and Kink finding algorithms
 - More realistic digitisation
- Future Plans
 - Vertex tracking
 - Forward tracking
 - Vertexing
 - Particle ID
 - Silicon tracking

- Available from ilcsoft Savannah as a tarball or zip archive via
 - www-flc.desy.de/ilcsoft
- Available on the "ILC Software for the LDC" DVD for both Window and Linux
 - These do not represent a "production release" of MarlinReco, they are meant to allow people to see whats there and to offer a starting point to get involved

Summary

- MarlinReco provides a first important step towards the full reconstruction software needed to answer questions raised by the detector concept studies
- Initial studies using MarlinReco are underway
- Plans to extend functionality exist
- If you have reconstruction code we would like to hear from you