Shower Models for Calorimeter

<u> ACFA8 2005/07/12</u>

Jeri M.-C. Chang (RCNS, Tohoku U.), K. Fujii (KEK), T. Fujikawa (RCNS, Tohoku U.), K. Kawagoe (Kobe U.), H. Matsunaga (Tsukuba U.), A. Miyamoto (KEK), T. Nagamine (RCNS, Tohoku U.), H. Ono (Niigata U.), A.L.C. Sanchez (Niigata U.),

T. Takeshita (Shinshu U.), A. Yamaguchi (Tsukuba U.), Y. Yamaguchi (Tsukuba U.), S. Yamamoto (Graduate U.), T. Yoshioka (ICEPP, Tokyo U.)

Motivation

Update the ElectroMagnetic Shower Models
Update the Hadronic Shower Models

Use the same setup as our previous prototype
 Calibrate the absorbed energy
 Compare the energy resolution
 Check the Energy Compensation
 Check the Missing Energy
 Suggest the best Shower models for Jupiter

EM Shower Models

LCIonPhysics, LCBosonPhysics, LCLeptonPhysics, LCDecayPhysics

Date: 7 July 2004

Author: *D.H. Wright (SLAC)*

http://www.slac.stanford.edu/comp/physics/gean t4/slac_physics_lists/ilc/physlistdoc.html

Standard electromagnetic process

Default in the physics_lists in GEANT4 7.0.p1

<u> ACFA8 2005/07/12 Jeri M.-C. Chang</u>

Standard EM Processes

 Processes of gamma, electron, and positron interactions with media was traditionally called Electromagnetic Process (EM)
 Hadron interaction with atomic electrons are also EM

▶ Gamma

Photo-electric effect
 Compton scattering
 e+e- pair production
 µ+µ- pair production
 Electron and positron
 Ionization
 Bremsstrahlung
 Positron annihilation

Muons

- Ionization
- Bremsstrahlung
- e+e- pair production
- Hadrons
 - Ionization
- **Ions**
 - Ionization
- Multiple scattering

Standalone Setup

Setup the same lead/plastic scintillator sampling calorimeter written in <u>NIMA 487 (2002) 291-307</u> lead thickness is 8mm; scintillator thickness is 2 mm

We compare the energy resolution between:

- Data
- MC (GEANT4 <u>Standard</u> EM Process)
- MC (LC[<u>Ion,Boson,Lepton,Decay</u>] Physics +GEANT4 Standard EM Process)

Check Point: Data and MC results should be close enough

Details: Geant4 7.0.p1; max step length = 1 mm (save CPU Time); range cut = 10 micron (save secondary particles)

АСТА8 2005/07/12 Jeri M.-C. Chana

Compare the MC & Data (e-)

Hadronic Shower Models

 LCHadronPhysics (2004 by D.H. Wright, SLAC)
 http://www.slac.stanford.edu/comp/physics/geant4/slac physics_lists/ilc/physlistdoc.html
 In GEANT4 PhysicsList
 QGSP 2.8 (2002 by J.P. Wellisch)
 LHEP 3.7 (2002 by J.P. Wellisch)
 FTFP 2.8 (2002 by J.P. Wellisch)
 QGSC 2.9 (2002 by J.P. Wellisch)
 Packaging 2.4 (2005 by G. Cosmo)
 http://cmsdoc.cern.ch/~hpw/GHAD/HomePage/geant4.6.1/c alorimetry/index.html

Hadronic Shower Models

LHEP, is the fastest, when it comes to CPU. It uses the <u>LEP and HEP parametrized models for inelastic</u> <u>scattering</u>.

▶ QGSP, theory driven modeling. It employs quark gluon string model for the 'punch-through' interactions of the projectile with a nucleus, the string excitation cross-sections being calculated in quasi-eikonal approximation.

QGSC, is as QGSP for the initial reaction, but uses chiral invariant phase-space decay (multi-quasmon fragmentation) to model the behavior of the system's fragmentation.

FTFP, is similar to QGSP for the treatment of the fragmentation, but the string excitation/fragmentation is changed from quarkgluon string model to a <u>diffractive string excitation</u>.

Standalone Setup

Setup the same lead/plastic scintillator sampling calorimeter written in **NIMA 487 (2002) 291-307** lead thickness is 8mm; scintillator thickness is 2 mm

Details: Geant4 7.0.p1; max step length = 1 mm (save CPU Time); range cut = 10 micron (save secondary particles); energy lower than 10 GeV case, there will be no Fe block in front of the ECAL.

АСТА8 2005/07/12 Jeri M.-C. Chana

Energy Calibration (e-)

Energy Calibration (π -) QGSP

Compare the MC & Data (π -)

АСТА8 2005/07/12 Jeri M.-C. Chana

Compare the MC & Data (π -)

Data		$\sigma/E = (46.6 \pm 0.4)\%/\sqrt{E} + (0.1 \pm 0.1)\%$
MC	QGSP FTFP	$\sigma/E = (46.5 \pm 1.0)\%/\sqrt{E} + (3.4 \pm 0.2)\%$ $\sigma/E = (46.8 \pm 1.0)\%/\sqrt{E} + (3.8 \pm 0.2)\%$
	QGSC	$\sigma/E = (43.7 \pm 1.0)\%/\sqrt{E} + (5.1 \pm 0.2)\%$
	LHEP	$\sigma/E = (43.3 \pm 1.0)\%/\sqrt{E} + (5.4 \pm 0.2)\%$

LCHadronPhysics (sometimes it makes GEANT4 crash, especially when the energy is higher than 100 GeV)
 We prefer to use the QGSP model as our Hadronic shower model.

We don't know why the fitting **constant** term can't fit the data well.

<u> ACFA8 2005/07/12 Jeri M.-C. Chang</u>

Error Message (LCHadronPhysics)

*** G4Exception : 007 issued by : G4HadronicProcess ChooseHadronicInteraction failed. *** Fatal Exception *** core dump ***

***** G4Exception: Aborting execution *****

In src/G4EnergyRangeManager.cc,	In src/G4EnergyRangeManager.cc,
line 118:	line 110:
===> GetHadronicInteraction:	===> GetHadronicInteraction: No
Energy ranges of two models fully	Model found
overlapping	Unrecoverable error for:
Unrecoverable error for:	- Particle energy[GeV] = 48.65899
- Particle energy[GeV] =	- Material = Lead
47.417756	- Particle type = gamma
- Material = Lead	
- Particle type = proton	

Energy Compensation

Missing Energy (e-) 187.7 GeV

Missing Energy (e-)

Missing Energy (π -) 200.8 GeV

Missing Energy (π-)

Conclusion

- The EM and Hadron shower models are updated.
 - EM: Energy resolution of Data and MC are well fitted.
 - **<u>HD</u>: Energy resolution of \pi-, using QGSP model, fits data better than the others.</u>**
- Geometry settings for the Calorimeter
 - Seven interaction length for Calorimeter is long enough, corresponding missing energy is ~ 25%.
 - Missing Energy is larger in the lower energy region – improvement may be needed. (newly updated <u>GEANT4 7.1</u> was just released 12 days ago)
 - **Energy Compensation (e**/ π ratio) is close to 1 in the current sampling ratio.

Asia Simulation Tools

Last Update: 2005/May/03

http://acfahep.kek.jp/subg/sim/simtools/index.html

Download

SimTools-1-01-bin.tar.gz

Collections of pre-compiled binaries, documents, and examples.

SimTools-1-01-src.tar.gz

Source files correcponding to SimTools-1-01-bin.tar.gz

<u> ACFA8 2005/07/12 Jeri M.-C. Chang</u>

In Jupiter, Energy Calibration: electron

