Resistive Plate Chambers as Active Medium in the DHCAL

José Repond Argonne National Laboratory

Snowmass Workshop, August 14 – 27, 2005

Collaborating institutions

Argonne National Laboratory Boston University University of Chicago Fermilab University of Iowa (Onel et al.) Protvino (Russia) Regina (Canada) (UTA)

Performance parameters

Cell sizes

MIP detection efficiency

Response to neutrals

Intrinsic noise

Cross-talk

Uniformity over space

Uniformity over time

Speed of device

Shower spread

Shower containment

 $1.0 \times 1.0 \text{ cm}^2$ (for prototype section)

 98% not including borders and electronics (no detailed calorimeter design available)
~60%/√E for K_L⁰, no sensitivity to slow neutrons

 $\sim 0.1 \text{ Hz/cm}^2$

1.6 pads/MIP/layer

Within ± 1%

No changes observed over months

~20 ms/cm² recharging time

No sensitivity to slow neutrons (maybe can be changed if necessary) Don't understand question

Hardware considerations I

Reliability Provenness Aging Requirements on T, p, humidity Effect of magnetic field HV **Robustness** Mechanical rigidity

No problem Relatively mature, invented in 1985 Not observed so far Robust None measured Operates with ~ 8 kV HV plateau about 100 V Handle glass with care

Hardware considerations II

Analog readout	Not useful
Rate capability	Recharge time of 20 ms/cm ² Sufficient for endcaps Design to cope with higher rates can be devleoped
Compatibility with other systems	Yes

Hardware considerations III

Construction/assembly

Signal collection/routing

Electronics

Calibration

Cost (mechanical)

Cost (readout)

Cost (operation)

Easy

Digitization on chamber Challenge of mixing analog & digital signals

Large number of channels (50.10⁶ channels) Multiplexing is the game...

Not an issue, due to the high MIP detection $\boldsymbol{\epsilon}$

Cheap

Currently about \$1/channnel

Gas (Freon) no expensive, low flow

Time scales

2005	RussiaEquip 1 m² with Minsk-based readout (32 x32 channels)	
	US	Develop and test design of larger chambers
	GEMs	Cosmic ray studies with stacks of GEMs
	GEMs	Initiate long foil production and testing
	US	Prototype ASICs: finalize design
	US	Specify remainder of readout system (released soon)
	US	Design and prototype all subsystems
2006		Produce chambers
		Produce ASICs Only possible if funded
		Produce other subsystems
2007		Move to test beam
		Take data Tune Hadron
2008		Take data Simulation
		Design LC hadron calorimeter