R&D Status of the GLD ECAL and Photon Sensors

2005/08/23, at Snowmass Hiroyuki Matsunaga (University of Tsukuba) For GLDCAL group

Outline

- ECAL
 - GLD CAL baseline design
 - Scintillator-strip ECAL
 - Other R&D's
- Photon Sensors
 - Russian SiPM / Hamamatsu MPC
 - Measurements of basic properties
- Summary

GLD ECAL

- Baseline design
 - Scintillator/absorber sandwich
 - Two orthogonal strip layers
 - Effectively small granularity of 1cmx1cm
 - 4cmx4cm tiles to resolve ghost hits
 - Tungsten as absorber
 - Small Moriere radius
 - WLS fiber
 - SiPM/MPC as photon sensors
 - R_{ECAL} : 2.1 ~ 2.3m

Scintillator-strip ECAL

- ECAL test module
 - Lead (4mm thick) + 2 Sci. strip layers (2mm thick)
 - Strip : 1cm x 20cm
 - Multi-Anode PMT
 - Tentatively for beam tests
 - 17X₀ (24 layers)
 - WLS fiber (Y-11, 1mm- ϕ)
 - Testbeams at KEK PS

Lateral Shower Profiles

- Lateral shower profiles measured two-dimensionally
 - Integrated lateral shower profiles
 - X=0 : particle incident position
 - Good agreement with MC simulation
 - Taking into account light-leakage and cross-talks evaluated from MIP
 - Reasonable results with respect to granularity and Moriere radius (2.7 cm)

Other R&D's

- Tile-fiber ECAL (4x4 cm²)
 - Testbeam analysis ongoing
- Scintillator shapes and wrapping materials – Light yield, uniformity,...
- Scintillator production with extrusion process
 - DongHee Kim's talk
- Simulation
 - Parameter optimization

New Silicon Photon Sensor

- Micro APD cells in Geiger mode
- Good for scintillator-fiber readout
 - Gain ~ 10⁶ (no amplifier needed)
 - Photon counting
 - ~1000 pixels in ~1mm²
 - Compact, directly attached to fibers at the end of strips/tiles
 - Operation in B-field is possible
 - Good timing resolution

- Originally developed in Russia (SiPM)
- Hamamatsu Photonics started R&D last year

Tests of photon sensors

- Samples
 - Russian SiPM: R1156 (1156=34x34 pixels)
 - Hamamatsu MPC: H100 (10x10 pixels)
 - Hamamatsu MPC: H400 (20x20 pixels)
 - Hamamatsu MPC: H1000 -- coming soon
- Measurements of basic properties
 - Photon counting capability
 - Gain and noise rate
 - Uniformity and efficiency
 - Tests were done at Kobe University and Niigata University

Russian SiPM (Silicon photomultiplier)

- Number of pixels: 34x34 =1156
- Bias Voltage : 64 ~ 67.5V
- Gain: ~10⁶

Photoelectron peaks observed

with an oscilloscope (using fast amplifier)

Hamamatsu MPC (Multi-pixel photon counter)

- Number of pixels: 100 and 400
- Bias voltage: 47 ~ 51V
- Gain: 10⁶ ~ 10⁷
- Now under development
 - Not commercially available

400 pixel

10

Effective area:

~72.25% for 100 pixel

~42.00% for 400 pixel

100 pixel

Photon counting capability

- Up to several photons at room temperature
- H100 is excellent in photon counting

More photon counting by H100

• Observed up to 40~60 photon peaks by changing LED light intensity

LED 4.5V×10ns

LED 5.5V×10ns

LED 6.5V×10ns

LED 7.5V×10ns

Noise rate measurement (R1156)

- Threshold=-30mV with fast amp (x200): well below single pixel signal
- Bias V: 64 ~ 67.5 V; Temperature: -20, -10, 0, 10, 20 C; Four samples

Noise rate measurement (H100 / H400)

- Threshold=-30mV with fast amp (x200); same condition as R1156
- One order of magnitude less noises than R1156
- H100: More noise rates at lower temperature -> Gain change ?

Gain measurement (R1156)

- Gain : ~10⁶
- Gain is higher at lower temperature

Gain measurement (H100 / H400)

- Gain(H100) is larger than Gain(H400)
 - Gain(H100): ~107
 - Gain(H400): ~10⁶
- Gain variation is very sensitive to bias voltage
 - Accurate voltage control will be necessary for stable operation

Uniformity

- Measured uniformity for half (50) pixels of H100
 - Laser is irradiated in the central region of the pixels
- PH deviations: 10% in RMS

Laser hitting area (smaller than 1pixel)

Efficiency measurement

 Efficiency was measured as

(# of 1photon events) /
(# of all events)

- Low signal efficiency at the sensor edge
- Good efficiency in the central region

Fraction of 1photon events

Summary

- GLD ECAL design: Scintillator-strips and tiles
 - Scintillator-strip ECAL works as expected
 - Needs optimization (for PFA) with MC simulation
- Tested new silicon photon sensors
 - Russian SiPM and Hamamatsu MPC
 - Hamamatsu MPC is promising
 - Still a lot of things to check:
 - Linearity, cross-talk, overall efficiency, long-term stability, ...
 - Close communication between Hamamatsu and users is important for better performance and production use