Simulation Studies of GEM-DHCal

Snowmass 2005 Aug. 15 – 27, 2005 Jae Yu University of Texas at Arlington

- GEM Analog and Digital Performance Studies
- No-confusion "Jet" Energy Resolution Study
- Initial Development of Particle Flow Algorithm
- The next steps
- Magnetic Field Impact Study
- Conclusions

*On behalf of the HEP group at UTA.

Introduction

- DHCAL: a solution for keeping the cost manageable for PFA
- Fine cell sizes needed for calorimeter cluster identifications and associations w/ tracks to minimize confusion
- UTA focused on DHCAL using GEM for
 - Flexible geometrical design, using printed circuit pads
 - Cell sizes can be as fine a readout as in a GEM tracking chamber!
 - Gains, above 10^{3-4} , with spark probabilities per incident π less than 10^{-10}
 - Fast responses \rightarrow 40ns drift time for 3mm gap with ArCO₂
 - Relatively low HV ~ 400V across a GEM foil
 - Working on reasonable cost w/ 3M

Standalone Mokka-based GEM Simulation

- Use Mokka as the primary simulation tool
 - Kept the same detector dimensions as TESLA TDR
 - Replaced the HCAL scintillation counters with GEM (18mm SS + 6.5mm GEM, 1cmx1cm cells)
- Single Pions used for performance studies
 - 5 100 GeV single pions
 - Analyzed them using ROOT
 - Compared the results to TDR analog as the benchmark
 - GEM Analog and Digital (w/ and w/o threshold)
 - ECal is always analog
- "Jet" Energy Resolution
- Two pion studies for PFA development

UTA Double GEM Geometry

5

J. Yu

EM-HCAL Relative Sampling Weight

- $E_{\text{Live}} = \Sigma E_{\text{EM}} + \mathcal{W} \Sigma \mathbf{G} E_{\text{HCAL}}$
- For analog:
 - Landau + Gaussian (L+G) fit is used to determine the mean values as a function of incident pion energy for EM and HAD
 - Define the range for single Gaussian (G) fit using the mean
 - Take the mean of the G-fit as central value
 - Choose the difference between G and L+G fit means as the systematic uncertainty
- For digital:
 - Gaussian for entire energy range is used to determine the mean
 - Fit in the range that corresponds to 15% of the peak
 - Choose the 15% G fit mean as the central value
 - Difference between the two G as the systematic uncertainty
- Obtained the relative sampling weight $\boldsymbol{\mathcal{W}}$ using these mean values for EM only vs HCAL only events
- Perform linear fit to mean values as a function of incident pion energy
- Extract ratio of the slopes to give overall conversion factor C
 - E = C^{*} E_{Live}

8/23/2005

GEM Analog & Digital Converted: 15 and 50 GeV π^-

GEM HCAL Responses and Resolutions

Jet Energy Resolutions

Energy Flow Studies with two π^-

- Based on the studies of particles in jet events $e^+e^- \rightarrow t\bar{t} \rightarrow 6 jets \sqrt{s} = 1.0TeV$
- Pions $\langle E_{\pi} \rangle = 7.5$ GeV chosen for study
- Chose the distance between two pions $\Delta R=0.12$
- Develop an algorithm to subtract charged pion energies
- Use the density weighted method

$$d_{i} = \sum_{j=1, j \neq i}^{n} \frac{1}{R_{ij}} \quad \overline{\theta}_{i} = \frac{\sum_{j=1}^{n} d_{ij} \theta_{ij}}{\sum_{j=1}^{n} d_{ij}} \quad \overline{\phi}_{i} = \frac{\sum_{j=1}^{n} d_{ij} \phi_{ij}}{\sum_{j=1}^{n} d_{ij}}$$

8/23/2005

Half the mean separation

Two π Energy Flow Algorithm

8/23/2005

- 1. Fit the tracks in TPC and extrapolate to Hadronic Calorimeter
- Find the maximum density cell in each HCAL layer
- 3. Associate cells with each π based on distance to the extrapolated track position
- . Compute cal-centroid using the max cells
- . Draw fixed size cones w/ radius half the distance between the two π cal-centroids
- 6. Compute the density weighted center of each π shower in each layer
- 7. Re-determine the cal-centroid using the density weighted center
- 8. Use the new centroid to add energy in the cone of half the distance of the two π

Energy Subtraction Performance

J. Yu

The next step 1 – LCIO Version of Mokka

- Conversion to LCIO incorporated version of Mokka 04.00 completed
 - Reproduced previous results for verification w/ the GEM geometry
 - Need to commit GEM geometry driver to the central DB for inclusion to the new Mokka releases and to the LDC and SiD concept studies
 - Need to develope analysis framework using LCIO
 - Development of universally usable PFA necessary
 - Verified responses and the energy resolution

New Mokka GEM DHCAL Resolution

8/23/2005

GEM DHCAL Studies at UTA J. Yu

The next step 2 – GEM in SiD

- Inclusion GEM into SiD simulation package
 - Both the detailed and mixture version of the GEM
 Geometry given to Norman for the inclusion
- Large number of SiD simulated events with GEM requested → Not sure where we are on this
 - 50k each of single pions in energy ranges of 5 150 GeV
 - 50k each of single electrons in ranges of 5 150 GeV
 - Two 7.5 GeV pions separated by $\Delta R{=}0.12$
 - For performance studies with SiD geometry

Magnetic Field Impact Study

- Concerns on possibly spiral of ionization electrons, causing unwanted signal spread and amplification due to the perpendicular E and B
- Have one undergraduate working on this subject
- Use Maxwell to generate field lines
 - Completed an initial implementation of prototype chamber structure implementation
 - 11 holes suffice for our purpose
 - First run on double GEM for E field completed
 - Some interesting features are being investigated
- Feed the output field map from Maxwell into Garfield
- Study the impact of perpendicular E&B

8/23/2005

Maxwell Geometry and E field

Top and bottom of a GEM foil (60 μ m) at 400V

Conclusions and Plans

- Standalone GEM-based DHCAL performance studies completed
 - Initial consistency check w/ LCIO based Mokka completed
 - Studies with low energy (<5GeV) particles needed
- Zero-confusion PFA-based jet energy resolution resulted in 30%/sqrt(E)
 - Updated study w/ new Mokka version needed
- Initial cone-based PFA w/ two-single pion completed but progress has been slow
 - Studies w/ neutral hadrons and photons needed
- Plan to increase effort w/ GEM in SiD context
 - Performance studies needed in SiD
 - Studies w/ neutral hadrons needed
- Impact of magnetic field to ionization electrons slowly progressing
- Test Beam geometry implementation needed
- A lot of work needed but insufficient manpower at the moment... 8/23/2005 GEM DHCAL Studies at UTA