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LESSONS FROM 25 YEARS OF R&D

e LESSON I: Energy resolution is determined by fluctuations,
not by average values
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LESSONS FROM 25 YEARS OF R&D

e LESSON I: Energy resolution is determined by fluctuations,

not by average values
Consequence for PFA: 2E; = (30 £+ 5)% much better than (60 + 20)%

The relevant fluctuations are /large and almost energy independent



o LESSON I:

o LESSON 2:

LESSONS FROM 25 YEARS OF R&D

Energy resolution is determined by fluctuations,

not by average values
Consequence for PFA: 2E; = (30 £+ 5)% much better than (60 + 20)%

The relevant fluctuations are /arge and almost energy independent

Hadronic calorimeter resolution does nor scale with £ -1/2

Resolution goal should be stated as: 6 =3 GeV @ 80 - 90 GeV
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LESSONS FROM 25 YEARS OF R&D

e LESSON I: Energy resolution is determined by fluctuations,

not by average values
Consequence for PFA: 2E; = (30 £+ 5)% much better than (60 + 20)%

The relevant fluctuations are /arge and almost energy independent

e [ ESSON 2: Hadronic calorimeter resolution does nor scale with £ 172

Resolution goal should be stated as: 6 =3 GeV @ 80 - 90 GeV

e LESSON 3: Digital calorimetry has been tried and abandoned, tor good reasons
Lots of em shower activity in HAD section



Saturation 1n "digital" calorimeters
(wire chamber readout)
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Hadronic shower profiles: Fluctuations!
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lead/iron/plastic-scintillator calorimeter. Data from [Gre 94].



LESSONS FROM 25 YEARS OF R&D

e LESSON I: Energy resolution is determined by fluctuations,

not by average values
Consequence for PFA: 2E; = (30 £+ 5)% much better than (60 + 20)%

The relevant fluctuations are large and almost energy independent

e [ ESSON 2: Hadronic calorimeter resolution does nor scale with £ 172

Resolution goal should be stated as: 6 =3 GeV @ 80 - 90 GeV

e LESSON 3: Digital calorimetry has been tried and abandoned, tor good reasons
Lots of em shower activity in HAD section

e LESSON 4a: A narrow signal distribution is useless if the mean value is incorrect
Correct energy scale 1s at least as as important as good resolution

LESSON 4b: Longitudinal segmentation means asking for trouble



The sampling fraction changes with depth!
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Consequences of depth dependence sampling fraction
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LESSONS FROM 25 YEARS OF R&D

e LESSON I: Energy resolution is determined by fluctuations,

not by average values
Consequence for PFA: 2E; = (30 £+ 5)% much better than (60 + 20)%

The relevant fluctuations are large and almost energy independent

e [ ESSON 2: Hadronic calorimeter resolution does nor scale with £ 172

Resolution goal should be stated as: 6 =3 GeV @ 80 - 90 GeV

e LESSON 3: Digital calorimetry has been tried and abandoned, tor good reasons
Lots of em shower activity in HAD section

e LESSON 4a: A narrow signal distribution is useless if the mean value is incorrect
Correct energy scale 1s at least as as important as good resolution

LESSON 4b: Longitudinal segmentation means asking for trouble

® LESSON 5: GEANT based MC simulations of hadronic shower development
are fundamentally flawed —— useless as design tool



LESSONS FROM 25 YEARS OF R&D

e LESSON 6: If you want to improve hadronic calorimeter performance

— reduce/eliminate the (effects of) fluctuations that dominate the performance

1) Fluctuations in the em shower fraction, ]Zm

2) Fluctuations in visible energy (nuclear binding energy losses)

This can be done
ILC requirements were already met 15 years ago



Hadronic signal distributions in compensating calorimeter
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Fluctuations in the em shower component (f,,,,)

e Why are these important ?

- Electromagnetic calorimeter response # non-em response (¢//1 # /)
- Event-to-event fluctuations are large and non-Gaussian
- <fem> depends on shower energy and age

e Cause of all common problems in hadron calorimeters

- Energy scale different from electrons, in energy-dependent way
- Hadronic non-linearity

- Non-Gaussian response function

- Poor energy resolution

- Calibration of the sections of a longitudinally segmented detector

e Solutions
- Compensating calorimeters (e/h = 1), e.g. Pb/plastic scintillator
- Measure f,,, event-by-event



(Fluctuations in) the electromagnetic shower fraction, f.,,

~
/ y
AN + — — Cu (k=0.82,E(=0.7 GeV) |

—— Pb (k=0.82,Ep=1.3GeV) 20}
®  SPACAL [Aco92b| _
A  QFCAL|Ake97]

0.7 ' —— T 100
5 L & ]
g s A sof @
E 06| A s =
G s 4 =
.§ N = g 6of
w /+/ o
o 05~ - ¥ %)
kS =
2 5 a0
& M
o
©
Q@
m

i ) 0 | | | 1
O e | T 100 0 02 04 06 08 1.0
Pion energy (GeV) Electromagnetic fraction, fep,
The em fraction 1s, on average, Fluctuations in fey, are

large and energy dependent large and non- Poissonian



The DREAM principle

e Quartz fibers are only sensitive to em shower component!
- CMS prototype: e/h ~ 5 NIM A399 (1997) 202

= Use dual-readout system:

- Regular readout (scintillator, LAr,...) measures visible energy
- Quartz fibers measure em shower component Eep,

- Combining both results makes it possible to determine fem
and the energy [ of the showering hadron

- Eliminate dominant source of fluctuations

DREAM = Dual REAdout Module

o The DREAM Collaboration:
N. Akchurin, K. Carrell, H. Kim, R. Thomas, R. Wigmans (TTU)
O. Atramentov, J. Hauptman (IASU), H.P. Paar (UCSD), A. Penzo (Trieste)



Signal density (photons/cm?, a.u.)

Radial hadron shower profiles (DREAM)
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DREAM: Structure

—2.5 mm-
~— 4 mm——-

e Some characteristics of the DREAM detector

- Depth 200 cm (10.0 Ajyt)

Effective radius 16.2 cm (0.81 Aint, 8.0 pyr)

Mass instrumented volume 1030 kg

Number of fibers 35910, diameter 0.8 mm, total length &~ 90 km

Hexagonal towers (19), each read out by 2 PMTs



DREAM readout
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Experimental setup for DREAM beam tests
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Calibration with 40 GeV electrons (tilt 2°)
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Events per bin
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DREAM: Hadronic response (non-linearity)
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DREAM: The (energy-independent) Q/S method
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DREAM: relationship between Q/S ratio

em shower fraction

0.

(/S signal ratio

0.2 0.4 0.6 0.8 |
N 1 T | ] 1 ] L ]
-~ a) Q
= Entries 25121
: Mean 0.7806
— RMS 0.07532

Lr il 1. i Lk gl ! 4 I O | l =334 1 1.1 .2 1

4 05 06 07 08 09 | 1.1

1.2

and f...

800

700

300

200

100

I|IIIIIII|'I!IlllfflIlilll'llllllIII|IIII|IIII|II

I}

=)
N—’

Jem

Entries
Mean

RMS

25121

(.5532

0.1212

IIIIIIIlIIiI

cc::

0.2

0.4

0.6

0.8

|

Electromagnetic fraction




DREAM: Effect of event selection based on f,,,
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DREAM: Relationship between Q/S and fep,
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Average scintillator signal

DREAM: Signal dependence on f.,
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Dual-Readout Calorimetry in Practice
The (energy-independent) Q/S method

e Hadronic response (normalized to electrons):
R(fem) = fem + W [ - fem]: e/h=13(8), 5 (C)

e (/S response ratio related to fey, value — find fo, from @Q/S:

Q Ry fan+020 (1 — fun)

S B RS B .fem+0-77 (1_fem)

e Correction to measured signals (regardless of energy):

1 1+ p1/po ] . D
S{: i = S ; th — = h — 1
orr meas |:1 + Fom ‘Pl/P{’] witll Do (El/ ).S'
1+ p1/po . D1
Qcm'r == Qmeas [ ] ; with — = (e/h . = 1
1+fem'pl/p[] Po ( / )C




DREAM: Effect o
160;* Entries 13507 Uncorrected
120; Mean 133.1
= |RMS 186
80
40E
> OE Ty S 1SS
L 300
O = |Entries 13507
s = |x?/ndf 292/158
& 2005_ Mean 190.1
- - |Sigma 9.69
= 100
o E Q/S method
L e
600E [Entries 13507
= [x*/ndf  95/65
400 & |Mean 202.5
— [Sigma  4.29
: . i
200F Q+S method
3 E
0:4 E—_4i o - J--4 & & 2 __E__Z2 _§ J . £ IR, S
0 50 100 150 200

[

f corrections (200 GeV "jets")

250

Cerenkov signal (GeV)



Hadronic response: Effect Q/S correction
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Energy (GeV)
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CONCLUSIONS

from tests

e DREAM offers a powerful technique to /71prove hadronic calorimeter performance:
- Correct hadronic energy reconstruction, in an instrument calibrated with electrons!

- Linearity for hadrons and jets

- Gaussian response functions

- Energy resolution scales with 1/vE

- 0/E < 5% for high-energy "jets", in a detector with a mass of only | ton!

dominated by fluctuations in shower leakage

e These, and many other, experimental results are described in 3 papers:

Hadrons & jets: Nucl. Instr. & Meth. A537 (2005) 537
Electrons: Nucl. Instr. & Meth. A536 (2005) 29
Muons: Nucl. Instr. & Meth. A533 (2004) 305



ILC Calorimetry

What is needed? DREAM
1) Correct hadronic energy reconstruction V4

2) Separate W fromZ — 0 ~3GeV

DREAM prototype resolution (6~7 GeV) limited by Needed

o Leakage fluctuations (mass 1 ton) $

o Light yield (Quartz fibers: 8 C.p.e./GeV — 35%/\E) more light
® Fluctuations in visible energy TREAM



More Light

e Use fibers with larger numerical aperture
(e.g. clear acrylic plastic fibers: 18 C.p.e./GeV)

e [ncrease fiber packing fraction and/or quantum efficiency
(this would necessitate different readout, e.g. SIPM)

o Use homogeneous medium

There 1s absolutely no reason why DREAM principles should be
limited to fibers

These principles can be used in any optical calorimeter whose
signals can be separated into scintillation and Cerenkov components

—> DREAM 2



DREAM 2

e To what extent can light from an optical calorimeter be
separated into its scintillaton and Cerenkov components?

o Modified the DREAM calorimeter

Copper

70, 5+7 PMTI (g)
b 244 PMT2 (C)
o9

14346 PMT3 (mixed)

e Separation methods based on differences in:

- Time structure of signals
- Light directionality

- Optical spectra

- Polarization

Also:

Fibers read out
from both ends



DREAM - Differences 1in time structure
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DREAM - Light directionality
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Ultimate Hadron Calorimetry

¢ Having eliminated all other etfects,

fluctuations in nuclear binding energy losses (fAp)
are the main remaining challenge

® AB is correlated with the total kinetic energy carried by neutrons
Efficient detection of neutrons can reduce intrinsic resolution

of hadron calorimeters to ~15%/\/E

o T REAM — measure that kinetic energy event by event
(triple readout)



TREAM

e A third type of fibers will make 1t possible to measure E(n)
and thus reduce the effects of fluctuations in AB

e Two options are being studied:

- Replace every second scintillating fiber in DREAM with a
non-hydrogenous scintillating fiber (e.g. doped quartz)
E(n) can be determined from a comparison of signals from
hydrogenous and non-hydrogenous fibers

- Develop dedicated fibers
that are specifically sensitive to MeV-type neutrons



DREAM/ILC R&D Program

® [nvestigate issues relevant for DREAM-based ILC calorimeter

- Build and test larger prototype, with SiPM readout
- Build homogeneous EM section, test in conjunction
- Build test module with neutron sensitive fibers

- elc.

® [nternational collaboration is being formed
- Original DREAM 1nstitutes (TTU, IASU, UCSD, Trieste)

- Several Italian institutes have expressed interest to join
- Others are welcome



CONCLUSIONS

e D(T)REAM seems capable of meeting / exceeding
ILC hadronic calorimeter performance requirements

e Bonus: Em resolution < 5%/\/E

e And: The entire detector can be calibrated with electrons!



Monte Carlo simulations and hadron calorimetry

e Hadron calorimetry

GEANT/GEISHA /FLUKA .... have not contributed anything to
our fundamental understanding ot hadron calorimetry

Progress in understanding has been made despite these programs

Simulations are flawed at fundamental levels, e.g. 7 production
and neutron contributions to the signals, which are crucial for un-
derstanding hadron calorimetry

Benchmark data for tests of MC simulations:
- E. Bernardi et al., NIM A262 (1987) 229
- G. d’Agostini et al., NIM A274 (1989) 134
- N. Akchurin et al., NIM A408 (1998) 380.



Benchmark data for hadronic Monte Carlo
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FIG. 8.27. Calorimeter benchmark data for testing the correct implementation of 7° produc-
tion in Monte Carlo simulations of hadronic shower development. Experimental data from a
copper/quartz-fiber calorimeter, showing the 7 /e signal ratio as a function of energy (), the

response to protons and pions, as well as the ratio of these responses, as a function of energy
(b), the response functions to 300 GeV pions (¢) and protons (d), and the energy resolutions
for pions and protons as a function of energy (e) [Akc 97].
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Figure 25: Calorimeter benchmark data
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