Luminosity Detector for the ILC

Halina Abramowicz

• Tel Aviv University

On behalf of the **FCAL** Collaboration

Electrons/Bhabhas

(for R. Ingbir)

Electrons/Positrons - Geant-3 integrated generator.

Bhabha scattering - BHWIDE generator.

llaboration

precision design

Beamstrahlung and Beam Spread

Bhabha scattering - BHWIDE generator.

Beamstrahlung - Circe generator.

Beam spread - included separately.

llaboration

recision design

Collaboration

Cell Size

1.3 cm * 2 cm >

1.3 cm * 6 cm <

~1 Radiation Length

~1 Moliere Radius

Snowmass 05

6

Energy Dependence

Shower Information

Shower sizeLog. Weight Selection

Most of the information is in the selected cells.

llaboration

precision design

Geometric Acceptance

Energy Resolution

Granularity in θ

Electronics Simulation

Collaboration High precision design

Electronics noise

100% of the cells have noise, without any dead cells

llaboration

precision design

Maximum Peak Shower Design

Our basic detector is designed with

30 rings * **24** sectors * **15** cylinders = 10,800 channels

Do we use these channels in the most effective way ?

24 sectors * **15** rings * (10 cylinders + 20 cylinders) = 10,800 channels

recision design

Polar Reconstruction

Snowmass 05

19

ollaboration

ligh precision design

Strip design

Fast Detector Simulation

Motivation :

laboratio

High statistics is required to notice precision of : $\frac{\Delta L}{L} \cong 10^{-4}$ (Which is the precision goal of the ILC)

Luminosity precision determination :

There is an analytic calculation (and approximation): $\frac{\Delta L}{L} \approx \frac{2^* \Delta \theta}{\theta}$

- N₁ : Reconstructed and generated in acceptance region.
- N₂ : Generated in acceptance region but reconstructed outside.
- N₃ : Generated outside acceptance region but reconstructed inside.

High Statistics Simulation

22

llaboration

igh precision design

High Statistics Simulation

Changing the detector resolution with no bias

Collaboration

Data and MC

In real life we can include the detector performance (which is measured in test beam) into MC. The only question is: **How well should we know the detector performance ?**

Present Understanding (pad option)

10 cylinders	(θ)
--------------	-----

60 cylinders (θ)

Based on optimizing theta measurement

Parameter	Opal	LumiCal
Distance from the IP	± 2.5 m	± 3.05 m
Sampling layers	19	30
Cylinders	32	60 (middle layers), 10 (first and last layers)
Sectors	32	24
Pitch in r (mm)	2.5	3.3 (middle layers),
		20 (first and last layers)
Pitch in θ (rad)	0.001	0.001 (middle layers),
		0.006 (first and last layers)
Pitch in ϕ (deg)	11.25	15
Pitch in z	1 X ₀	1 X ₀
	$2 X_0$ (last 4 layers)	
r_{min} (mm)	62	80
r_{max} (mm)	142	280
θ_{min} (mrad)	25	26
θ_{max} (IIII ad)	57	91
$Z_{max} - Z_{min}$ (cm)	14	20
Electronics channels	19,456	25,200
in one detector arm		

Performance of present configuration

Parameter	Pad Performance	Strip Performance
Energy resolution	$25\%(\sqrt{GeV})$	$8:16\%(\sqrt{GeV})$
θ resolution	3.5 * 10 ⁻⁵ rad	3.3 * 10 ⁻⁵ rad
ϕ resolution	0.63 deg	
$\Delta heta$	~ 1.5 * 10 ⁻⁶ rad	~2.9* 10 ⁻⁶ rad
Electronics channels	25,200	3720 (with bonding sectors) 13,320 (without bonding)

With this performance the $\Delta L / L = 10^{-4}$ goal can be reached.

ollaboration

Beamstrahlung pair background

27

Future R&D plans

Additional hardware design constrains and electronics simulation (digitisation, reality noise parameters, silicon production constrains)

Additional background studies (two photon events, beamstrahlung hitting the detector)

Luminosity with polarised beams

Luminosity with a crossing angle

Sensors design & tests

Electronics design

Prototype

The End

Optimization

Collaboration High precision design

-3