

Physics & Detectors at the LHC and the SLHC 2005 ILC Physics & Detector Workshop

Snowmass, CO, August 17, 2005 Wesley H. Smith

U. Wisconsin – Madison

Outline: ATLAS, CMS & LHC Startup Discovery Physics examples SLHC Upgrade Mature LHC → SLHC Discovery Physics examples Detector Upgrades

This talk is available on:

http://cmsdoc.cern.ch/cms/TRIDAS/tr/0508/Smith ILC SLHC Aug05.pdf

(Thanks to S. Dasu, D. Denegri, A. De Roeck, G. Hall, B. Mellado, A. Nikitenko, M. Spiropulu)

ATLAS in 2007

ATLAS in 2005

Assembly of 8th barrel toroid by end of this month, In Sept: Start to install Barrel & Endcap Calorimeters, Inner Detector Services

CMS in 2007

HCAL

sandwich

Plastic scintillator/brass

IRON YOKE

• 2007: 50 kHz

MUON

ENDCAPS

(instead of 100)

2007:

Level-1 Trigger Output

RPC $|\eta| < 1.6$

instead of 2.1

& 4th endcap

layer missing

CALORIMETERS Superconducting Coil, 4 Tesla **ECAL** 76k scintillating PbWO4 crystals 2007: no endcap ECAL (installed during 1st shutdown) TRACKER **Pixels Silicon Microstrips** 210 m² of silicon sensors 9.6M channels 2007: no pixels

(installed during 1st shutdown)

MUON BARREL

Resistive Plate Drift Tube Chambers (DT) Chambers (RPC)

W. Smith, U. Wisconsin, ILC Workshop, Snowmass, August 17, 2005

Cathode Strip Chambers (CSC) Resistive Plate Chambers (RPC)

LHC & SLHC Physics & Detectors - 4

CMS in 2005

Cathode Strip Chambers on Endcap Muon Disks 1 (in service bldg.)

W. Smith, U. Wisconsin, ILC Workshop, Snowmass, August 17, 2005

LHC & SLHC Physics & Detectors - 5

LHC & SLHC Physics & Detectors - 7

LHC Start: Search for SUSY

SUSY Bkgd. Uncertainties

LHC & SLHC Physics & Detectors - 9

LHC Start: Higgs Production/Decay

Almost all allowed mass range explored with 10 fb⁻¹ for ATLAS-CMS With 30 fb⁻¹, more than 7 σ for the whole range

Mature LHC Program

If Higgs observed:

- Measure parameters (mass, couplings), need up to 300 fb⁻¹
- Self-coupling not accessible with LHC alone*

If we think we observe SUSY:

- Try to measure mass (study cascades, end-points, ...)
- Try to determine the model: MSSM, NMSSM, ...
- Establish connection to cosmology (dark matter candidate?)
- Understand impact on Higgs phenomenology
- Try to determine the SUSY breaking mechanism
- Difficult/impossible with LHC alone*:
 - sleptons > 350 GeV, full gaugino mass spectrum, sparticle spinparity & all couplings, disentangle squarks of first two generations

If neither or something else:

- Strong W_LW_L scattering? Other EWSB mechanisms?
- Extra dimensions, Little Higgs, Technicolor ?
- Do we have to accept fine-tuning (*e.g.* Split Supersymmetry) ?

What's next to follow up on this*: LHC upgrade & ILC

(1) *LHC IR quads life expectancy* estimated <10 years from radiation dose
 (2) the *statistical error halving time* will exceed 5 years by 2011-2012
 (3) therefore, it is reasonable to plan a *machine luminosity upgrade based on new low-β IR magnets before ~2014*

Beam dumping system limits total current; upgrade may be necessary

• Compatible with ultimate intensity of 1.7x10¹¹/bunch, increases to 2.0x10¹¹/bunch could be tolerated with reduced safety margin or after moderate upgrade

Detector architecture

- Limits luminosity; detector upgrade in parallel with accelerator upgrade, which could allow moving low- β quads closer to the IP
- In their present configurations, the CMS and ATLAS detectors can accept a maximum luminosity of 3–5x10³⁴ cm⁻²s⁻¹

Collimation & machine protection: limits total current & β^{\star}

 Machine protection is challenging: beam transverse energy density is 1000 times that of the Tevatron; simple graphite collimators may limit maximum transverse energy density to half the nominal value in order to prevent collimator damage; closing collimators to 6σ yields an impedance at the edge of instability; a local fast loss of 2.2x10⁻⁶ of the beam intensity quenches nearby arc magnets

Electron cloud: may constrain minimum bunch spacing

 Additional heat load on beam screen; its value depends on beam & surface parameters; at 75-ns spacing no problem anticipated; initial bunch populations at 25-ns spacing will be limited to half nominal value

Beam-beam: limits N_b/ϵ crossing angle; compensation schemes may help

LHC phase 0: maximum performance w/o hardware changes LHC phase 1: maximum performance with arcs unchanged LHC phase 2: maximum performance with 'major' changes Nominal LHC: 7 TeV w/ *L*=10³⁴ cm⁻²s⁻¹ in IP1 & IP5 (ATLAS & CMS) Phase 0:

- 1. collide beams only in IP1&5 with alternating H-V crossing
- 2. increase N_b up to beam-beam limit $\rightarrow L=2.3 \times 10^{34}$ cm⁻²s⁻¹
- 3. increase dipole field to 9T (ultimate field) $\rightarrow E_{max}$ =7.54 TeV

Phase1: changes only in LHC insertions and/or injector complex include:

- 1. modify insertion quadrupoles and/or layout $\rightarrow \beta^*=0.25$ m
- 2. increase crossing angle by ~1.4
- 3. increase N_b up to ultimate intensity $\rightarrow L=3.3 \times 10^{34}$ cm⁻²s⁻¹
- 4. halve σ_z with high harmonic system $\rightarrow L=4.6 \times 10^{34}$ cm⁻²s⁻¹
- 5. double number of bunches (and increase θ_c !)

 $L=9.2x10^{34}$ cm⁻²s⁻¹ (excluded by e-cloud?)

phase 2: luminosity & energy upgrade:
modify injectors to significantly increase beam intensity and brilliance beyond ultimate value (possibly together with beam-beam compensation schemes)

 equip SPS with s.c. magnets, upgrade transfer lines, and inject at 1 TeV into LHC

install new dipoles with 15-T field and a safety margin of 2 T, which are considered a reasonable target for 2015 and could be operated by 2020
beam energy around 12.5 TeV
For the rest of this talk, just consider phase 1 (SLHC)

Baseline (S)LHC Parameters

parameter	symbol	nominal	ultimate	shorter	
		LHC	LHC	bunches	
#bunches	пь	2808	2808	5616	
protons/bunch	$N_{b} [10^{11}]$	1.15	1.7	1.7	
bunch spacing	$\Delta t_{\rm sep}$ [ns]	25	25	12.5	\leftarrow 25 ns \rightarrow 12.5 ns
average current	<i>I</i> [A]	0.58	0.86	1.72	
norm. transv.	ε_n [µm]	3.75	3.75	3.75	
emittance					
longit. profile		Gaussian	Gaussian	Gaussian	
rms b. length	σ_{z} [cm]	7.55	7.55	3.78	
beta at IP1&IP5	β^* [m]	0.55	0.5	0.25	
crossing angle	θ_{c} [µrad]	285	315	445	
Piwinski	$\theta_c \sigma_z / (\sigma^*)$	0.64	0.75	0.75	
parameter	2)				
luminosity	$L [10^{34}]$	1.0	2.3	9.2	1034×1035
	$cm^{-2}s^{-1}$]				$\leftarrow 10^{s} \rightarrow 10^{ss}$
events/ crossing		19	44	88	\leftarrow pileup x 5
length luminous	σ_{lum}	44.9	42.8	21.8	
region (rms)	[mm]				

W. Smith, U. Wisconsin, ILC Workshop, Snowmass, August 17, 2005

LHC & SLHC Physics & Detectors - 17

Combine different production & decay modes → ratios of Higgs couplings to bosons & fermions

• Independent of uncertainties on σ^{tot}_{Higgs} , $\Gamma_{H,} \int L dt \rightarrow stat$. limited

• Benefit from LHC \rightarrow SLHC (assuming similar detector capabilities)

Higgs pair prod. & self coupling

Higgs pair production through two Higgs bosons radiated independently (from VB, top) & from trilinear self-coupling terms proportional to λ_{HHH}^{SM}

SLHC: improved reach for heavy MSSM Higgs bosons

Order of magnitude increase in statistics with SLHC should allow Extension of discovery domain for massive MSSM Higgs bosons A,H,H[±]

e.g.: A/H $\rightarrow \tau \tau \rightarrow$ lepton + τ -jet, produced in bbA/H

SLHC: improved reach for MSSM Higgs bosons

MSSM parameter space regions for > 5σ discovery for the various Higgs bosons, 300 fb⁻¹ (LHC), and expected improvement - at least two discoverable Higgs bosons - with 3000 fb⁻¹ (SLHC) per experiment, ATLAS & CMS combined.

Supersymmetry at SLHC

Use high E_{T} jets, (GeV) leptons & missing E_T **П**1/2 Not hurt by increased 2500 pile-up at SLHC **Extends discovery** 2000 region by ~ 0.5 TeV exclud • ~ 2.5 TeV \rightarrow 3 TeV 1500 (4 TeV for VLHC) **Discovery means** > 5σ • excess of events over 1000 known (SM)

backgrounds

New gauge bosons: LHC & SLHC

sequential Z' model, Z' production (assuming same BR as for SM Z) and Z' width:

Z' mass (TeV) 5 6 2 3 4 $\sigma(Z' \to e^+e^-)(fb)$ 512 2.5 23.9 0.38 0.080.026 158.0 $\Gamma_{Z'}$ (GeV) 30.6 62.4 94.2 126.1190.0

Acceptance, e/μ reconstruction eff., resolution, effects of pile-up noise at 10³⁵, ECAL saturation included. (CMS study)

Assuming 10 events to claim discovery, reach at:

```
LHC (600 fb<sup>-1</sup>) ≈ 5.3 TeV
```

SLHC (6000 fb⁻¹) ≈ 6.5 TeV

LHC Extra Dimensions: Randall-Sundrum model

 $pp \rightarrow G_{RS} \rightarrow ee$ full simulation and reconstruction chain in CMS, 2 electron clusters, $p_t > 100$ GeV, $|\eta| < 1.44$ and $1.56 < |\eta| < 2.5$, el. isolation, H/E < 0.1, corrected for saturation from ECAL electronics (big effect on high mass resonances!)

 10^{-2}

0.5

LHC, SLHC Gravitons

100 fb⁻¹

SLHC

 $G \rightarrow ee$

3.5

3

LHC

whole plane theoretically allowed, shaded part favored: **Coupling Parameter** 5 fb⁻¹ 20 fb⁻¹ $|R_{5}| < M_{5}^{2}$ 1 fb⁻¹ 10 fb⁻¹ 10⁻¹ **Region of Interest** LIDTEN

TeV scale Extra Dimensions

2

2.5

1.5

Detector Luminosity Effects

$H{\rightarrow}ZZ \rightarrow \mu\mu ee,\,M_{\text{H}}\text{=}$ 300 GeV for different luminosities in CMS

Expected Pile-up at Super LHC in ATLAS at 1035

230 min.bias collisions per 25 ns. crossing

- ~ 10000 particles in $|\eta| \leq 3.2$
- mostly low p_T tracks
- requires upgrades to detectors

W. Smith, U. Wisconsin, ILC Workshop, Snowmass, August 17, 2005

N_{ch}(|y|≤0.5)

neutron flue

eq. Mev

ATLAS Tracker Region Charged Hadron Irradiation

W. Smith, U. Wisconsin, ILC Workshop, Snowmass, August 17, 2005

LHC & SLHC Physics & Detectors - 29

Possible ATLAS Super-LHC Module Design

ATLAS Tracker Based on Barrel and Disc Supports

Effectively two styles of modules (with 12cm long strips)

Barrel Modules

- G Hall

Higher granularity & more pixels required Material budget is limited Power is limited

- Increase in channels, power in cables
- Hope for partial relief from smaller feature size technology

Level-1 Trigger capability

- More about this later...
- Digital readout with sophisticated processing Radiation Tolerance
 - Qualification is time consuming
 - SEU: Error detection & correction

Large system size & large number of channels

- Automated testing & diagnostics
- Design for production

CMS Pixel Upgrade Ideas

W. Smith, U. Wisconsin, ILC Workshop, Snowmass, August 17, 2005

70

CMS ideas for trigger-capable tracker modules - very preliminary

- Use close spaced stacked pixel lay.
 Geometrical p_T cut on data (e.g. 5 GeV): 1
 → (v) of track bisecting sensor
 (→ window)
- this is ~1 pixel
- Use simple coincidence in stacked sensor pair to find tracklets
- More on implementation later

-- C. Foudas & J. Jones

•At end of column, column address is added to each data element

·Data concatenated into column-ordered list, time-stamp attached at front

SLHC: CMS Calorimeter

- **HF:Quartz Fiber: Possibly replaced**
 - Very fast gives good BX ID
 - Modify logic to provide finer-grain information
 - Improves forward jet-tagging
- HCAL:Scintillator/Brass: Barrel stays but endcap replaced
 - Has sufficient time resolution to provide energy in correct 12.5 ns BX with 40 MHz sampling. Readout may be able to produce 80 MHz already.
- **ECAL: PBWO₄ Crystal: Stays**
 - Also has sufficient time resolution to provide energy in correct 12.5 ns BX with 40 MHz sampling, may be able to produce 80 MHz output already.
 - Exclude on-detector electronics modifications for now difficult:
 - Regroup crystals to reduce $\Delta\eta$ tower size minor improvement
 - Additional fine-grain analysis of individual crystal data minor improvement
- **Conclusions:**
 - Front end logic same except where detector changes
 - Need new TPG logic to produce 80 MHz information
 - Need higher speed links for inputs to Cal Regional Trigger

- F.E. Taylor

- LAr: Pileup will be ~ 3.2 X higher @ 10³⁵
 - Electronics shaping time may need change to optimize noise response
- Space charge effects present for lηl>2 in EM LAr calorimeter
 - Some intervention will be necessary
- BC ID may be problematical with sampling @ 25 ns
 - May have to change pulse shape sampling to 12.5 ns
- Tilecal will suffer some radiation damage $\Delta LY < 20\%$
 - Calibration & correction may be difficult to see Min-I signal amidst pileup

SLHC: ATLAS Muons

Muon Detector issues:

- F.E. Taylor

- Faster & More Rad-Hard trigger technology needed
 - RPCs (present design) will not survive @ 10³⁵
 - Intrinsically fast response ~ 3 ns, but resistivity increases at high rate
 - TGCs need to be faster for 12.5 BX ID...perhaps possible
- Gaseous detectors only practical way to cover large area of muon system (MDT & CSC) Area ~ 10⁴ m²
 - · Better test data needed on resol'n vs. rate
 - Bkg. γ and neutron efficiencies
 - Search for faster gas \Rightarrow smaller drift time
 - Drive technologies to 10³⁵ conditions

Technologies:

 MDT & CSC & TGC will be stressed – especially high lηl ends of deployment, RPCs will have to be replaced

W. Smith, U. Wisconsin, ILC Workshop, Snowmass, August 17, 2005

LHC & SLHC Physics & Detectors - 38

CMS Endcap Muon

- 4 stations of CSCs: Bunch Crossing ID at 12.5 ns:
 - Use second arriving segment to define track BX
 - Use a 3 BX window
 - Improve BX ID efficiency to 95% with centered peak, taking 2nd Local Charged Track, requiring 3 or more stations
 - Requires 4 stations so can require 3 stations at L1
 - Investigate improving CSC performance: HV, Gas, ...
 - If 5 ns resolution \Rightarrow 4 ns, BX ID efficiency might climb to 98%
- **Occupancy at 80 MHz: Local Charged Tracks found in each station**
 - Entire system: 4.5 LCTs /BX
 - Worst case: inner station: 0.125/BX (others 3X smaller)
 - $P(\ge 2) = 0.7\%$ (spoils di- μ measurement in single station)
 - Conclude: not huge, but neglected neutrons and ghosts may be underestimated⇒ need to upgrade trigger front end to transmit LCT @ 80 MHz
- **Occupancy in Track-Finder at 80 MHz:**
 - Using 4 BX window, find 0.5/50 ns in inner station (every other BX at 25 ns!)
 - ME2–4 3X smaller, possibly only need 3 BX
 - Need studies to see if these tracks generate triggers

SLHC: CMS Drift Tubes & RPCs

DT:

- Operates at 40 MHz in barrel
- Could produce results for 80 MHz with loss of efficiency...or...
- Could produce large rate of lower quality hits for 80 MHz for combination with a tracking trigger with no loss of efficiency

RPC:

- Operates at 40 MHz
- Could produce results with 12.5 ns window with some minor external changes.
- Uncertain if RPC can operate at SLHC rates, particularly in the endcap

ATLAS Trig & DAQ for LHC

Overall Trigger & DAQ Architecture: 3 Levels:

W. Smith, U. Wisconsin, ILC Workshop, Snowmass, August 17, 2005

CMS Trig & DAQ for LHC

Overall Trigger & DAQ Architecture: 2 Levels:

SLHC Level-1 Trigger @ 10³⁵

Occupancy

- Degraded performance of algorithms
 - Electrons: reduced rejection at fixed efficiency from isolation
 - Muons: increased background rates from accidental coincidences
- Larger event size to be read out
 - New Tracker: higher channel count & occupancy $\rightarrow \,$ large factor
 - Reduces the max level-1 rate for fixed bandwidth readout.

Trigger Rates

- Try to hold max L1 rate at 100 kHz by increasing readout bandwidth
 - Avoid rebuilding front end electronics/readouts where possible
 - Limits: (readout time) (< 10 μ s) and data size (total now 1 MB)
 - Use buffers for increased latency for processing, not post-L1A
 - May need to increase L1 rate even with all improvements
 - Greater burden on DAQ
- Implies raising E_T thresholds on electrons, photons, muons, jets and use of less inclusive triggers
 - Need to compensate for larger interaction rate & degradation in algorithm
 performance due to occupancy

Radiation damage — Increases for part of level-1 trigger located on detector

SLHC Trigger @ 12.5 ns

Choice of 80 MHz

- Reduce pile-up, improve algorithm performance, less data volume for detectors that identify 12.5 ns BX data
- Be prepared for LHC Machine group electron-cloud solution
- Retain ability to time-in experiment
 - Beam structure vital to time alignment
- Higher frequencies ~ continuous beam

Rebuild level-1 processors to use data "sampled" at 80 MHz

- Already ATLAS & CMS have internal processing up to 160 MHz and higher in a few cases
- Use 40 MHz sampled front-end data to produce trigger primitives with 12.5 ns resolution
 - e.g. cal. time res. < 25 ns, pulse time already from multiple samples
- Save some latency by running all trigger systems at 80 MHz I/O
- Technology exists to handle increased bandwidth

High-P_T discovery physics

- Not a big rate problem since high thresholds
- **Completion of LHC physics program**
 - Example: precise measurements of Higgs sector
 - Require low thresholds on leptons/photons/jets
 - Use more exclusive triggers since final states will be known

Control & Calibration triggers

- W, Z, Top events
- Low threshold but prescaled

ATLAS/CMS Studies in hep-ph/0204087:

- inclusive single muon p_T > 30 GeV (rate ~ 25 kHz)
- •inclusive isolated $e/\gamma E_T > 55 \text{ GeV}$ (rate ~ 20 kHz)
- •isolated e/ γ pair E_T > 30 GeV (rate ~ 5 kHz)
 - •or 2 different thresholds (i.e. 45 & 25 GeV)
- •muon pair $p_T > 20$ GeV (rate ~ few kHz?)
- •jet $E_T > 150$ GeV.AND. E_T (miss) > 80 GeV (rate ~ 1–2 kHz)
- •inclusive jet trigger $E_T > 350$ GeV (rate ~ 1 kHz)
- •inclusive E_T(miss) > 150 GeV (rate ~1 kHz);

multi-jet trigger with thresholds determined by the affordable rate

CMS SLHC L-1 Tracking Trigger Ideas & Implications for L-1

Additional Component at Level-1

- Actually, CMS already has rudimentary L-1 Tracking Trigger
 - Pixel z-vertex in $\Delta\eta \times \Delta\phi$ bins can reject jets from pile-up
- SLHC Track Trigger could provide outer stub and inner track
 - Combine with cal at L-1 to reject π^0 electron candidates
 - Reject jets from other crossings by z-vertex
 - Reduce accidentals and wrong crossings in muon system
 - Provide sharp P_{T} threshold in muon trigger at high P_{T}
- Cal & Muon L-1 output needs granularity & info. to combine w/ tracking trig. Also need to produce hardware to make combinations

Move some HLT algorithms into L-1 or design new algorithms reflecting tracking trigger capabilities

MTC Version 0 done

- Local track clusters from jets used for 1st level trigger signal \rightarrow jet trigger with $\sigma_{z} = 6$ mm!
- Program in Readout Chip track cluster multiplicity for trigger output signal
- Combine in Module Trigger Chip (MTC) 16 trig. signals & decide on module trigger output

- D. Acosta Combine with L1 CSC as is now done at HLT:

- •Attach tracker hits to improve P_T assignment precision from 15% standalone muon measurement to 1.5% with the tracker
 - Improves sign determination & provides vertex constraints
- •Find pixel tracks within cone around muon track and compute sum P_T as an isolation criterion
 - Less sensitive to pile-up than calorimetric information if primary vertex of hard-scattering can be determined (~100 vertices total at SLHC!)
- To do this requires $\eta \phi$ information on muons finer than the current 0.05–2.5°
 - •No problem, since both are already available at 0.0125 and 0.015°

CMS Muon Rate at $L = 10^{34}$

CMS SLHC Calorimeter Trigger

- S. Dasu

Electrons/Photons:

Report on finer scale to match to tracks

τ-jets:

Cluster in 2x2 trigger towers with 2x2 window sliding by 1x1 with additional isolation logic

Jets:

 Provide options for 6x6, 8x8, 10x10, 12x12 trigger tower jets, sliding in 1x1 or 2x2

Missing Energy:

Finer grain geometric lookup & improved resolution in sums

Output:

- On finer-grain scale to match tracking trigger
 - Particularly helpful for electron trigger

Reasonable extension of existing system

Assuming R&D program starts soon

CMS tracking for electron trigger

- **γ: only tracker handle: isolation**
 - Need knowledge of vertex location to avoid loss of efficiency

 $z_{vtr} = \pm 15 \text{ cm}$

τ-lepton trigger: isolation from pixel tracks outside signal cone & inside isolation cone

W. Smith, U. Wisconsin, ILC Workshop, Snowmass, August 17, 2005

LHC & SLHC Physics & Detectors - 52

Current for LHC: $TPG \Rightarrow RCT \Rightarrow GCT \Rightarrow GT$ Proposed for SLHC (with tracking added): **TPG** \Rightarrow **Clustering** \Rightarrow **Correlator** \Rightarrow **Selector Trigger Primitives** Tracker L1 Front End $e / \gamma / \tau$ clustering μ track finder **Regional Track** DT, CSC / RPC 2x2, ϕ -strip 'TPG' Generator Missing E_T Seeded Track Readout Jet Clustering

Regional Correlation, Selection, Sorting

Global Trigger, Event Selection Manager

CMS SLHC Trigger Architecture

- Level 1: Regional to Global Component to Global
- **SLHC Proposal:**
 - Combine Level-1 Trigger data between tracking, calorimeter & muon at Regional Level at finer granularity
 - Transmit physics objects made from tracking, calorimeter & muon regional trigger data to global trigger
 - Implication: perform some of tracking, isolation & other regional trigger functions in combinations between regional triggers
 - New "Regional" cross-detector trigger crates
 - Leave present L1+ HLT structure intact (except latency)
 - No added levels minimize impact on CMS readout

CMS Latency of 3.2 μsec becomes 256 crossings @ 80 MHz

- Assuming rebuild of tracking & preshower electronics will store this many samples
- Do we need more?
 - Yield of crossings for processing only increases from ~70 to ~140
 - It's the cables!
 - Parts of trigger already using higher frequency
- How much more? Justification?
 - Combination with tracking logic
 - Increased algorithm complexity
 - Asynchronous links or FPGA-integrated deserialization require more latency
 - Finer result granularity may require more processing time
 - ECAL digital pipeline memory is 256 40 MHz samples = 6.4 μ sec
 - Propose this as CMS SLHC Level-1 Latency baseline

- Attempt to restrict upgrade to post-TPG electronics as much as possible where detectors are retained
 - Only change where required evolutionary some possible pre-SLHC?
 - Inner pixel layer replacement is just one opportunity.
- **New Features:**
 - 80 MHz I/O Operation
 - Level-1 Tracking Trigger
 - Inner pixel track & outer tracker stub
 - Reports "crude" P_{T} & multiplicity in ~ 0.1x 0.1 $\Delta\eta\times\Delta\phi$
 - Regional Muon & Cal Triggers report in ~ 0.1 x 0.1 $\Delta\eta \times \Delta\phi$
 - Regional Level-1 Tracking correlator
 - Separate systems for Muon & Cal Triggers
 - Separate crates covering $\Delta\eta\times\Delta\phi$ regions
 - Sits between regional triggers & global trigger
 - Latency of 6.4 μsec

SLHC DAQ

SLHC Network bandwidth at least 5–10 times LHC

- Assuming L1 trigger rate same as LHC
- Increased Occupancy
- Decreased channel granularity (esp. tracker)
- Upgrade paths for ATLAS & CMS can depend on present architecture
 - ATLAS: Region of Interest based Level-2 trigger in order to reduce bandwidth to processor farm
 - Opportunity to put tracking information into level-2 hardware
 - Possible to create multiple slices of ATLAS present Rol readout to handle higher rate
 - CMS: scalable single hardware level event building
 - If architecture is kept, requires level-1 tracking trigger

SLHC: CMS DAQ: Possible structure upgrade

- S. Cittolin

LHC DAQ design:

A network with Terabit/s aggregate bandwidth is achieved by two stages of switches and a layer of intermediate data concentrators used to optimize the Event Builder traffic load.

Event buffers ~100GByte memory cover a **real-time interval of seconds**

SLHC DAQ design:

A **multi-Terabit/s network** congestion free and scalable (as expected from communication industry). In addition to the Level-1 Accept, the Trigger has to transmit to the front ends additional information: event type & event destination address of the processing system (CPU, Cluster, TIER..) where the event has to be built and analyzed.

The event fragment delivery and therefore the **event building will be controlled by the network protocols** and (commercial) network internal resources (buffers, multi-path, network processors, etc.)

Real time buffers of Pbytes temporary storage disks could permit a **real-time interval of days**, allowing event selection tasks to better exploit the available distributed processing power (even over the GRID!).

New SLHC Fast Controls, Clocking & Timing System (TTC)

80 MHz:

- Provide this capability "just in case" SLHC can operate at 80 MHz
 - Present system operates at 40 MHz
- Provide output frequencies close to that of logic
- **Drive High-Speed Links**
 - Design to drive next generation of links
 - Build in very good peak-to-peak jitter performance
- Fast Controls (trigger/readout signal loop):
 - Provides Clock, L1A, Reset, BC0 in real time for each crossing
 - Transmits and receives fast control information
 - Provides interface with Event Manager (EVM), Trigger Throttle System
 - For each L1A (@ 100 kHz), each front end buffer gets IP address of node to transmit event fragment to
 - EVM sends event building information in real time at crossing frequency using TTC system
 - EVM updates 'list' of avail. event filter services (CPU-IP, etc.) where to send data
 - This info.is embedded in data sent into DAQ net which builds events at destination
 - Event Manager & Global Trigger must have a tight interface
 - This control logic must process new events at 100 kHz \rightarrow R&D

Conclusions

The LHC will initiate a new era in colliders, detectors & physics.

- Searches for Higgs, SUSY, ED, Z' will commence
 - Exploring the TeV scale
- Serious challenges for the machine, experiments & theorists will commence

The SLHC will extend the program of the LHC

- Extend the discovery mass/scale range by 25–30%
- Could provide first measurement of Higgs self-coupling
- Reasonable upgrade of LHC IR optics
- Rebuilding of experiment tracking & trigger systems
- Need to start now on R&D to prepare